@ FAIRYPROOF

Zebra Dex
AUDIT REPORT

Version 1.0.0
Serial No. 2023102000012013
Presented by Fairyproof

October 20, 2023

Zebra Dex

01. Introduction

This document includes the results of the audit performed by the Fairyproof team on the Zebra
Dex project.

Audit Start Time:

October 19, 2023

Audit End Time:

October 20, 2023

Audited Source File's Address:

https://scrollscan.com/address/Oxa63eb44c67813cad20A9aE654641ddc918412941#code

https://scrollscan.com/address/0x0122960d6e391478bfE8fB2408Ba412D5600f621#code

Audited Code's Github Repository:

https://github.com/zebra-xyz/contracts

Audited Code's Github Commit Number When Audit Started:
4e4f03b9aeda10cc2e500a3fa33748607554ad57

Audited Code's Github Commit Number When Audit Ended:
6267fe296494536c31f751e375b644963a0ac783

Audited Source Files:

The source files audited include all the files as follows:

contracts/*.sol

The goal of this audit is to review Zebra's solidity implementation for its Dex function, study
potential security vulnerabilities, its general design and architecture, and uncover bugs that could
compromise the software in production.

We make observations on specific areas of the code that present concrete problems, as well as
general observations that traverse the entire codebase horizontally, which could improve its
quality as a whole.

This audit only applies to the specified code, software or any materials supplied by the Zebra team
for specified versions. Whenever the code, software, materials, settings, environment etc is
changed, the comments of this audit will no longer apply.

Presented by Fairyproof

af://n2
https://scrollscan.com/address/0xa63eb44c67813cad20A9aE654641ddc918412941#code
https://scrollscan.com/address/0x0122960d6e391478bfE8fB2408Ba412D5600f621#code
https://github.com/zebra-xyz/contracts
af://n26

Zebra Dex
— Disclaimer

Note that as of the date of publishing, the contents of this report reflect the current understanding
of known security patterns and state of the art regarding system security. You agree that your
access and/or use, including but not limited to any associated services, products, protocols,
platforms, content, and materials, will be at your sole risk.

The review does not extend to the compiler layer, or any other areas beyond the programming
language, or other programming aspects that could present security risks. If the audited source
files are smart contract files, risks or issues introduced by using data feeds from offchain sources
are not extended by this review either.

Given the size of the project, the findings detailed here are not to be considered exhaustive, and
further testing and audit is recommended after the issues covered are fixed.

To the fullest extent permitted by law, we disclaim all warranties, expressed or implied, in
connection with this report, its content, and the related services and products and your use
thereof, including, without limitation, the implied warranties of merchantability, fitness for a
particular purpose, and non-infringement.

We do not warrant, endorse, guarantee, or assume responsibility for any product or service
advertised or offered by a third party through the product, any open source or third-party
software, code, libraries, materials, or information linked to, called by, referenced by or accessible
through the report, its content, and the related services and products, any hyperlinked websites,
any websites or mobile applications appearing on any advertising, and we will not be a party to or
in any way be responsible for monitoring any transaction between you and any third-party
providers of products or services.

FOR AVOIDANCE OF DOUBT, THE REPORT, ITS CONTENT, ACCESS, AND/OR USAGE THEREOF,
INCLUDING ANY ASSOCIATED SERVICES OR MATERIALS, SHALL NOT BE CONSIDERED OR RELIED
UPON AS ANY FORM OF FINANCIAL, INVESTMENT, TAX, LEGAL, REGULATORY, OR OTHER ADVICE.

— Methodology

The above files' code was studied in detail in order to acquire a clear impression of how the its
specifications were implemented. The codebase was then subject to deep analysis and scrutiny,
resulting in a series of observations. The problems and their potential solutions are discussed in
this document and, whenever possible, we identify common sources for such problems and
comment on them as well.

The Fairyproof auditing process follows a routine series of steps:
1. Code Review, Including:
e Project Diagnosis

Understanding the size, scope and functionality of your project's source code based on the
specifications, sources, and instructions provided to Fairyproof.

e Manual Code Review
Reading your source code line-by-line to identify potential vulnerabilities.

e Specification Comparison

Presented by Fairyproof

af://n26
af://n34

Zebra Dex

Determining whether your project's code successfully and efficiently accomplishes or executes its
functions according to the specifications, sources, and instructions provided to Fairyproof.

2. Testing and Automated Analysis, Including:
e Test Coverage Analysis

Determining whether the test cases cover your code and how much of your code is exercised or
executed when test cases are run.

e Symbolic Execution

Analyzing a program to determine the specific input that causes different parts of a program to
execute its functions.

3. Best Practices Review

Reviewing the source code to improve maintainability, security, and control based on the latest
established industry and academic practices, recommendations, and research.

— Structure of the document

This report contains a list of issues and comments on all the above source files. Each issue is
assigned a severity level based on the potential impact of the issue and recommendations to fix it,
if applicable. For ease of navigation, an index by topic and another by severity are both provided
at the beginning of the report.

— Documentation

For this audit, we used the following source(s) of truth about how the token issuance function
should work:

Website:https://zebra.xyz/

Whitepaper:https://zebra.gitbook.io/zebra-docs/

Source Code:

https://scrollscan.com/address/Oxa63eb44c67813cad20A9aE654641ddc918412941#code

https://scrollscan.com/address/0x0122960d6e391478bfE8fB2408Ba412D5600f621#code

These were considered the specification, and when discrepancies arose with the actual code
behavior, we consulted with the Zebra team or reported an issue.

— Comments from Auditor

Serial Number Auditor Audit Time Result

2023102000012013 Fairyproof Security Team ~ Oct 19, 2023 - Oct 20, 2023

Presented by Fairyproof

af://n68
af://n71
https://zebra.xyz/
https://zebra.gitbook.io/zebra-docs/
https://scrollscan.com/address/0xa63eb44c67813cad20A9aE654641ddc918412941#code
https://scrollscan.com/address/0x0122960d6e391478bfE8fB2408Ba412D5600f621#code
af://n80

Zebra Dex

@ 0 Critical @ All Resolved
@ 0 High © Al Resolved
2
Total Findings 0 Medium © Al Res
. 1 Low © All Resolved
1 Info © All Resolved

Summary:

The Fairyproof security team used its auto analysis tools and manual work to audit the project.
During the audit, one issue of low-severity and one issue of info-severity were uncovered. The
Zebra team fixed all the issues.

02. About Fairyproof

Fairyproof is a leading technology firm in the blockchain industry, providing consulting and
security audits for organizations. Fairyproof has developed industry security standards for
designing and deploying blockchain applications.

03. Introduction to Zebra

Zebra is a fully permissionless and composable decentralized exchange built on Scroll. It is
committed to providing users with a one-stop liquidity service that is cheaper, easier to use, and
more secure.

The above description is quoted from relevant documents of Zebra.

04. Major functions of audited code

The main function of the audit code is a UniswapV2-like decentralized exchange.
The transaction fee is three thousandths, and the platform’s share of the fee can be adjusted.

Presented by Fairyproof

af://n97
https://www.fairyproof.com/
af://n101
af://n106

05. Coverage of issues

Zebra Dex

The issues that the Fairyproof team covered when conducting the audit include but are not limited

to the following ones:

Access Control
Admin Rights
Arithmetic Precision
Code Improvement
Contract Upgrade/Migration
Delete Trap

Design Vulnerability
DosS Attack

EOA Call Trap

Fake Deposit
Function Visibility
Gas Consumption

Implementation Vulnerability

Inappropriate Callback Function

Injection Attack

Integer Overflow/Underflow
IsContract Trap

Miner's Advantage

Misc

Price Manipulation

Proxy selector clashing
Pseudo Random Number
Re-entrancy Attack
Replay Attack

Rollback Attack

Shadow Variable

Slot Conflict

Token Issuance

Tx.origin Authentication

Uninitialized Storage Pointer

Presented by Fairyproof

af://n110
af://n177

Zebra Dex

06. Severity level reference

Every issue in this report was assigned a severity level from the following:

severity issues need to be fixed as soon as possible.
@ severity issues will probably bring problems and should be fixed.
Medium severity issues could potentially bring problems and should eventually be fixed.

WA severity issues are minor details and warnings that can remain unfixed but would be
better fixed at some point in the future.

[l g a8 is not an issue or risk but a suggestion for code improvement.

07. Major areas that need attention

Based on the provided source code the Fairyproof team focused on the possible issues and risks
related to the following functions or areas.

- Function Implementation

We checked whether or not the functions were correctly implemented.
We found one issue, for more details please refer to [FP-1] in "09. Issue description".

- Access Control

We checked each of the functions that could modify a state, especially those functions that could
only be accessed by owner or administrator
We didn't find issues or risks in these functions or areas at the time of writing.

- Token Issuance & Transfer

We examined token issuance and transfers for situations that could harm the interests of holders.
We didn't find issues or risks in these functions or areas at the time of writing.

Presented by Fairyproof

af://n177
af://n191
af://n195
af://n198
af://n201
af://n204

Zebra Dex

- State Update

We checked some key state variables which should only be set at initialization.
We didn't find issues or risks in these functions or areas at the time of writing.

- Asset Security

We checked whether or not all the functions that transfer assets were safely handled.
We didn't find issues or risks in these functions or areas at the time of writing.

- Miscellaneous

We checked the code for optimization and robustness.
We found one issue, for more details please refer to [FP-2] in "09. Issue description".

08. List of issues by severity

Index Title Issue/Risk Severity Status
Design
FP-1 Lack of Max Value for Parameter & .
Vulnerability
Implementation
FP-2 Confusing Parameter Name P N
Vulnerability

09. Issue descriptions

[FP-1] Lack of Max Value for Parameter

Issue/Risk: Design Vulnerability
Description:

In zebraFactory.sol, the setFeeToRate function didn't check the max value of _rate. In
extreme cases, rate could be assigned with an extremely large value resulting in overflow issues

in the mintFee functionin zebraPair.sol.
Recommendation:

Consider setting a max value for _rate.

Presented by Fairyproof

af://n204
af://n207
af://n210
af://n214
af://n237

Zebra Dex
Update:

The Zebra team set a max value of 100 for _rate.
Status:

The zebra team has fixed the issue.

[FP-2] Confusing Parameter Name

Issue/Risk: Implementation Vulnerability
Description:

In the price function defined in zebraPair.sol, the basebecimal parameter was confusing. In
general decimal or decimals means a token's decimal. For example 18 stands for 10 ** 18,

Recommendation:

Consider using baseunit instead of baseDecimal
Update:

The Zebra team changed the parameter name.
Status:

The Zebra team has fixed the issue.

10. Recommendations to enhance the
overall security

We list some recommendations in this section. They are not mandatory but will enhance the
overall security of the system if they are adopted.

e Consider managing the owner's access control with great care and transfering it to a multi-sig
wallet or DAO when necessary.

11. Appendices

Presented by Fairyproof

af://n265
af://n273
af://n275

Zebra Dex

11.1 Unit Test

1. MockErc20.sol

// SPDX-License-Identifier: MIT
pragma solidity A0.6.0;

import "@openzeppelin/contracts/token/ERC20/ERC20.s01";

contract MockERC20 1is ERC20 {
address private owner = msg.sender;
constructor(string memory name, string memory symbol, uint256 initialSupply)
ERC20(name, symbol) public {
_mint(msg.sender, initialSupply);

function mint(address to ,uint amount) external {
require(msg.sender == owner,"not owner");
_mint(to,amount);

function burn(address to ,uint amount) external {
require(msg.sender == owner,"not owner");
_burn(to, amount) ;

2. MockWETH9.sol

// Copyright (c) 2015, 2016, 2017 Dapphub

// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or

// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.

pragma solidity =0.6.6;

contract WETH9 {

Presented by Fairyproof

af://n275
af://n277
af://n281

Zebra Dex

"Wrapped Ether";
"WETH";
18;

string pubTlic name

string public symbol
uint8 public decimals

event Approval(address indexed src, address indexed guy, uint wad);
event Transfer(address indexed src, address indexed dst, uint wad);
event Deposit(address indexed dst, uint wad);

event Withdrawal(address indexed src, uint wad);

mapping (address => uint) public balanceof;
mapping (address => mapping (address => uint)) public allowance;

function deposit() public payable {
balanceof[msg.sender] += msg.value;
emit Deposit(msg.sender, msg.value);

3

function withdraw(uint wad) public {
require(balanceof[msg.sender] >= wad, "");
balanceof[msg.sender] -= wad;
msg.sender.transfer(wad) ;
emit withdrawal(msg.sender, wad);

3

function totalsupply() public view returns (uint) {
return address(this).balance;

function approve(address guy, uint wad) public returns (bool) {
allowance[msg.sender][guy] = wad;
emit Approval(msg.sender, guy, wad);

return true;

function transfer(address dst, uint wad) public returns (bool) {
return transferFrom(msg.sender, dst, wad);

function transferFrom(address src, address dst, uint wad)

public
returns (bool)
{
require(balanceof[src] >= wad, "");
if (src != msg.sender && allowance[src][msg.sender] != uint(-1)) {
require(allowance[src][msg.sender] >= wad, "");
allowance[src][msg.sender] -= wad;
}
balanceof[src] -= wad;
balanceof[dst] += wad;
emit Transfer(src, dst, wad);
return true;
3

10
Presented by Fairyproof

Zebra Dex

3. Zebra.t.js

const {
loadFixture,
} = require("@nomicfoundation/hardhat-network-helpers™);

const { expect }
const { ethers }

require(''chai);
require("hardhat")

describe("zebra swap unit test", function() {
async function deployFixture() {

const [Owner,Alice,Bob,...Users] = await ethers.getSigners();

const WETH9 = await ethers.getContractFactory("WETH9");

const weth = await WETH9.deploy();

const MockERC20 = await ethers.getContractFactory("MockERC20");

const tokenA = await
MockERC20.deploy("tokenA","TAT",ethers.parseEther("10000000"));

const tokenB = await
MockERC20.deploy("tokenB","TBT",ethers.parseEther("10000000"));

const ZebraFactory = await ethers.getContractFactory("zebraFactory");
const factory = await zebraFactory.deploy(Owner.address);

const ZebraRouter = await ethers.getContractFactory("zebraRouter");
const router = await ZzebraRouter.deploy(factory.target,weth.target);
await factory.setFeeToRate(6);

await tokenA.approve(router.target,ethers.MaxuUint256);

await tokenB.approve(router.target,ethers.Maxuint256);
tokenA.connect(Alice).approve(router.target,ethers.Maxuint256);
tokenB.connect(Alice).approve(router.target,ethers.Maxuint256) ;

return {
factory, router, tokenA, tokenB,weth,owner,Alice,Bob,Users,MockERC20

18

it("add 1liquid tokenA and tokenB", async () => {
const {factory,tokenA,tokenB, router,owner,Alice,MockERC20} = await
loadFixture(deployFixture);

let pair = await factory.getPair(tokenA.target,tokenB.target);
expect(pair).eq(ethers.zeroAddress);
let e_pair = await factory.pairFor(tokenA.target, tokenB.target);
await router.addLiquidity(

tokenA. target,

tokenB.target,

ethers.parseEther("900"),

ethers.parseEther("100"),

1,

il

11

Presented by Fairyproof

af://n285

Zebra Dex
owner.address,
9876543210
DE
pair = await factory.getPair(tokenA.target,tokenB.target);
expect(pair).eq(e_pair);
let Tp = MockERC20.attach(pair);
let 1p_balance = await 1p.balanceof(Owner.address);
let origin = ethers.parseEther("300") - ethers.getBigInt(1000);
expect(lp_balance).eq(origin);

await tokenA.mint(Alice.address,ethers.parseEther("900"));
await tokenB.mint(Alice.address,ethers.parseether("100"));
// add again should be successful
await router.connect(Alice).addLiquidity(

tokenA.target,

tokenB.target,

ethers.parseEther("900"),

ethers.parseEther("100"),

il

il

Alice.address,

9876543210

Dk

Tp_balance = await Ip.balanceof(Alice.address);
await Ip.connect(Alice).approve(router.target,ethers.Maxuint256);
await router.connect(Alice).removeLiquidity(

tokenA. target,

tokenB.target,

Tp_balance,

il

il

Alice.address,

9876543210
)3
expect(await tokenA.balanceOf(Alice)).eq(ethers.parseether("900"));
expect(await tokenB.balanceof(Alice)).eq(ethers.parseether("100"));

3

it("add 1iquid tokenA and ETH", async () => {
const {factory,tokenA,weth,router,owner,MockERC20} = await
ToadFixture(deployFixture);
let pair = await factory.getPair(tokenA.target,weth.target);
expect(pair).eq(ethers.zeroAddress);
let e_pair = await factory.pairFor(tokenA.target,weth.target);
await router.addLiquidityETH(
tokenA. target,
ethers.parseEther("900"),

il
il
owner.address,
9876543210,
{value:ethers.parseether("100")}
Dt
pair = await factory.getPair(tokenA.target,weth.target);

expect(pair).eq(e_pair);

12
Presented by Fairyproof

Zebra Dex
let Tp = MockERC20.attach(pair);
let 1p_balance = await 1p.balanceof(owner.address);
let origin = ethers.parseether("300") - ethers.getBigInt(1000);
expect(lp_balance).eq(origin);

s

it("swap tokenA and TokenB test", async () => {
const {factory,tokenA,tokenB,router,owner,Alice} = await
loadFixture(deployFixture);
await router.addLiquidity(
tokenA. target,
tokenB.target,
ethers.parseEther("900"),
ethers.parseEther("100"),
1,
il
owner.address,
9876543210
DE
let [reserveA, reserveB] = await
factory.getReserves(tokenA.target, tokenB.target);
let amountIn = ethers.parseEther("2.0"); // tokenA
let amountout = await factory.getAmountout(
amountIn,
reserveA,
reserveB
)
await tokenA.mint(Alice.address,amountIn);
await router.swapExactTokensForTokens(amountIn,l,
[tokenA.target, tokenB.target],Alice.address,9876543210);
let balance = await tokenB.balanceof(Alice.address);
expect(balance).eq(amountout);

s

it("Swap ETH and TokenA", async () => {
const {factory,tokenA,weth,router,owner,Alice} = await
loadFixture(deployFixture);
await router.addLiquidityETH(
tokenA.target,
ethers.parseEther("900"),
1,
1,
owner.address,
9876543210,
{value:ethers.parseether("100")}
);

let [reserveIn, reserveOut] = await
factory.getReserves(weth.target, tokenA.target);
let amountIn = ethers.parseEther("2.0"); // weth
let amountout = await factory.getAmountout(
amountIn,
reserveln,
reserveout
);
await router.swapExactETHForTokﬁEf(

Presented by Fairyproof

Zebra Dex

1,

[weth.target, tokenA. target],

Alice.address,

9876543210,

{value:amountIn}
)
let balance = await tokenA.balanceof(Alice.address);
expect(balance).eq(amountout) ;

([reserveIn, reserveout] = await
factory.getReserves(tokenA.target,weth.target));
amountout = await factory.getAmountout(
balance,
reserveln,
reserveout
);
let lucky = ethers.getAddress("0x" + "0".repeat(36) + "1234");
await router.swapExactTokensForeTH(
balance,
il
[tokenA.target,weth.target],
Tucky,
9876543210
)
balance = await ethers.provider.getBalance(lucky);
expect(balance).eq(amountout);

s

s

4. UnitTestOutput

Zebra swap unit test
v add liquid tokenA and tokenB (2119ms)
v add 1liquid tokenA and ETH (95ms)
v Swap tokenA and TokenB test (152ms)
v Swap ETH and TokenA (208ms)

4 passing (3s)

11.2 External Functions Check Points

14
Presented by Fairyproof

af://n289
af://n294

Zebra Dex

1. ZebraFactory_output.md

contract: ZebraFactory is |ZebraFactory

(Empty fields in the table represent things that are not required or relevant)

) - . Param Unit)
Index Function StateMutability Modifier IsUserInterface Miscellaneous
Check Test
1 allPairsLength() view
2 createPair(address,address) Yes
Onl
3 setFeeTo(address) Y
feeToSetter
Only
setFeeToSetter(address)
feeToSetter
) Only
5 setFeeToRate(uint256)
feeToSetter
6 sortTokens(address,address) pure
7 pairFor(address,address) view
8 getReserves(address,address) view
9 quote(uint,uint,uint) pure
10 getAmountOut(uint,uint,uint) view
11 getAmountin(uint,uint,uint) view
12 getAmountsOut(uint,address[]) view
13 getAmountsin(uint,address[]) view
2. ZebraPair_output.md
contract: ZebraPair is IZebraPair, ZebraERC20
(Empty fields in the table represent things that are not required or relevant)
Param Unit
Index Function StateMutability Modifier IsUserlInterface Miscellaneous
Check Test
1 getReserves() view
2 initialize(address,address) Only once
3 mint(address) Tock Yes
4 burn(address) Tock Yes
5 swap(uint,uint,address,bytes) Tock Yes
6 skim(address) Tock Yes
7 sync() Tock Yes
8 price(address,uint256) view
9 approve(address,uint) Yes
10 transfer(address,uint) Yes
11 transferFrom(address,address,uint) Yes
12 permit(address,address,uint,uint,uint8,bytes32,bytes32) Yes

15
Presented by Fairyproof

af://n296
af://n429

3. ZebraRouter_output.md

contract: ZebraRouter is |ZebraRouter, Ownable

(Empty fields in the table represent things that are not required or relevant)

Index Function

1 receive()

2 pairFor(address,address)

3 setswapMining(address)

4 addLiquidity(address,address,uint,uint,uint,uint,address,uint)

5 addLiquidityETH(address,uint, uint,uint,address,uint)

6 removel ,address, uint,uint,uint,address, uint)

7 removeLiquidityETH(address,uint,uint,uint,address,uint)

8 removeLiquidityWithPermit(address,address,uint,uint,uint,address,uint,bool,uint8, bytes32, bytes32)
9 removeLiquidityETHWithPermit(address,uint,uint,uint,address,uint,bool,uint8,bytes32, bytes32)
10 removeLiquidityETHSupp OnTransferTokens(i uint,uint,uint,address,uint)

1 removeLiquidityETHWithPermitSupportingFeeOnTransfer uint,uint,uint,address,uint, bool,uint8, bytes32,bytes32)
12 swapExactTokensForTokens(uint,uint,address[].address,uint)

13 swapTokensForExactTokens(uint,uint,address[],address,uint)

14 swapExactETHForTokens(uint,address[],address,uint)

15 swapTokensForExactETH(uint,uint,address[],address,uint)

16 swapExactTokensForETH(uint,uint,address(],address,uint)

17 swapETHForExactTokens(uint,address[]address,uint)

18 swapExactTokensFor \gFeeOnTransfer ,uint,address[,address,uint)
19 swapExactETHForTokensSupportingFeeOnTransfer Tokens(uint,address{],address,uint)

20 swapExactTokensForETHSupportingFeeOnTransferTokens(uint,uint,address[] address,uint)
21 qQuote(Uint256,uint256,uint256)

2 getAMOoUNtOUL(UINt256,int256,uint256)

23 ‘getAmountin(uint256,uint256,uint256)

2 getAmountsOut(uint256,address])

25 getAmountsin(uint256,address(])

16

StateMutability

payable

view

payable

payable

payable

payable

view
view
view
view

view.

Modifier

onlyowner

ensure(deadline)
ensure(deadTine)
ensure(deadline)

ensure(deadline)

ensure(deadline)

ensure(deadTine)
ensure(deadline)
ensure(deadline)
ensure(deadTine)
ensure(deadline)
ensure(deadline)
ensure(deadTine)
ensure(deadline)

ensure(deadline)

Param
Check

Zebra Dex

Unit .
IsUserinterface Miscellaneous
Test

Only WETH

Presented by Fairyproof

af://n553

FAIRYPROOF

https://medium.com/@FairyproofT
https://twitter.com/FairyproofT
https://www.linkedin.com/company/fairyproof-tech
https://t.me/Fairyproof_tech

Reddit: https://www.reddit.com/user/FairyproofTech

0065086

	01. Introduction
	— Disclaimer
	— Methodology
	— Structure of the document
	— Documentation
	— Comments from Auditor

	02. About Fairyproof
	03. Introduction to Zebra
	04. Major functions of audited code
	05. Coverage of issues
	06. Severity level reference
	07. Major areas that need attention
	- Function Implementation
	- Access Control
	- Token Issuance & Transfer
	- State Update
	- Asset Security
	- Miscellaneous

	08. List of issues by severity
	09. Issue descriptions
	10. Recommendations to enhance the overall security
	11. Appendices
	11.1 Unit Test
	1. MockErc20.sol
	2. MockWETH9.sol
	3. Zebra.t.js
	4. UnitTestOutput

	11.2 External Functions Check Points
	1. ZebraFactory_output.md
	2. ZebraPair_output.md
	3. ZebraRouter_output.md

