
Sumati Token

Version 1.0.0

Serial No. 2022041100022016

Presented by Fairyproof

April 11, 2022

01. Introduction

This document includes the results of the audit performed by the Fairyproof team on the Sumati
token.

Audit Start Time:

April 7, 2022

Audit End Time:

April 10, 2022

Token Standards:

ERC-20, ERC-721

Project Tokens' Names:

Sumati BOSO, SARIRA

Token Symbols:

BOSO, SARIRA

Token Precisions:

18, 1

Audited Source Files:

The source files audited include all the files with the extension "sol" as follows:

The goal of this audit is to review Sumati’s solidity implementation for its token issuance
functions, study potential security vulnerabilities, its general design and architecture, and uncover
bugs that could compromise the software in production.

We make observations on specific areas of the code that present concrete problems, as well as
general observations that traverse the entire codebase horizontally, which could improve its
quality as a whole.

This audit only applies to the specified code, software or any materials supplied by the Sumati
team for specified versions. Whenever the code, software, materials, settings, environment etc is
changed, the comments of this audit will no longer apply.

./

├── BOSO.sol

└── sumati.sol

directory: 1 file: 2 lines: 1280

Sumati Token

Presented by Fairyproof1

af://n12

— Disclaimer
Note that as of the date of publishing, the contents of this report reflect the current
understanding of known security patterns and state of the art regarding system security. You
agree that your access and/or use, including but not limited to any associated services, products,
protocols, platforms, content, and materials, will be at your sole risk.

The review does not extend to the compiler layer, or any other areas beyond the programming
language, or other programming aspects that could present security risks. If the audited source
files are smart contract files, risks or issues introduced by using data feeds from off-chain sources
are not extended by this review either.

Given the size of the project, the findings detailed here are not to be considered exhaustive, and
further testing and audit is recommended after the issues covered are fixed.

To the fullest extent permitted by law, we disclaim all warranties, expressed or implied, in
connection with this report, its content, and the related services and products and your use
thereof, including, without limitation, the implied warranties of merchantability, fitness for a
particular purpose, and non-infringement.

We do not warrant, endorse, guarantee, or assume responsibility for any product or service
advertised or offered by a third party through the product, any open source or third-party
software, code, libraries, materials, or information linked to, called by, referenced by or accessible
through the report, its content, and the related services and products, any hyperlinked websites,
any websites or mobile applications appearing on any advertising, and we will not be a party to or
in any way be responsible for monitoring any transaction between you and any third-party
providers of products or services.

FOR AVOIDANCE OF DOUBT, THE REPORT, ITS CONTENT, ACCESS, AND/OR USAGE THEREOF,
INCLUDING ANY ASSOCIATED SERVICES OR MATERIALS, SHALL NOT BE CONSIDERED OR RELIED
UPON AS ANY FORM OF FINANCIAL, INVESTMENT, TAX, LEGAL, REGULATORY, OR OTHER ADVICE.

— Methodology
The above files' code was studied in detail in order to acquire a clear impression of how the its
specifications were implemented. The codebase was then subject to deep analysis and scrutiny,
resulting in a series of observations. The problems and their potential solutions are discussed in
this document and, whenever possible, we identify common sources for such problems and
comment on them as well.

The Fairyproof auditing process follows a routine series of steps:

1. Code review that includes the following

i. Review of the specifications, sources, and instructions provided to Fairyproof to make sure
we understand the size, scope, and functionality of the project's source code.

ii. Manual review of code, which is the process of reading source code line-by-line in an
attempt to identify potential vulnerabilities.

iii. Comparison to specification, which is the process of checking whether the code does what
the specifications, sources, and instructions provided to Fairyproof describe.

2. Testing and automated analysis that includes the following:

i. Test coverage analysis, which is the process of determining whether the test cases are
actually covering the code and how much code is exercised when we run the test cases.

Sumati Token

Presented by Fairyproof2

af://n43
af://n56

Serial Number Auditor Audit Time Resule

2022041100022016 Fairyproof Security Team 2022.04.07 - 2022.04.10 Low

ii. Symbolic execution, which is analyzing a program to determine what inputs cause each
part of a program to execute.

3. Best practices review, which is a review of the source code to improve maintainability,
security, and control based on the established industry and academic practices,
recommendations, and research.

— Structure of the document
This report contains a list of issues and comments on all the above source files. Each issue is
assigned a severity level based on the potential impact of the issue and recommendations to fix it,
if applicable. For ease of navigation, an index by topic and another by severity are both provided
at the beginning of the report.

— Documentation
For this audit, we used the following sources of truth about how the token issuance functions
should work:

Smart Contract Source Files

These were considered the specification, and when discrepancies arose with the actual code
behavior, we consulted with the Sumati team or reported an issue.

— Comments from Auditor

Summary:

Sumati Token

Presented by Fairyproof3

af://n67
af://n70
af://n76

The Fairyproof security team used its auto analysis tools and manual work to audit the project.
During the audit, 2 risks of medium-severity, 5 risks of low-severity and 2 risks of informational-
severity were discovered. 2 risks of medium-severity, 2 risks of low-severity and 2 risks of
informational-severity were fixed and 3 risks of low-severity were confirmed.

02. About Fairyproof

Fairyproof is a leading technology firm in the blockchain industry, providing consulting and
security audits for organizations. Fairyproof has developed industry security standards for
designing and deploying blockchain applications.

03. Major functions of audited code

The audited code mainly implements the following functions:

Issuance of ERC-20 Token
Token Name: Sumati BOSO

Token Symbol: BOSO

Token Precision: 18

Total Supply: 21,000,000,000

Mint/Burn: No additional mintage, no token burn

Transfer Pause/Freeze: Transfer cannot be paused or frozen.

Burn on Transaction: No

Issuance of ERC-721 Token
Token Name: SARIRA

Token Symbol: SARIRA

Total Supply: Uncapped

Mint/Burn: tokens can be minted additionally, no token burn

Transfer Pause/Freeze: Transfer cannot be paused or frozen.

Sumati Token

Presented by Fairyproof4

af://n83
https://www.fairyproof.com/
af://n95
af://n306
af://n315

Burn on Transaction: No

Misc: a callback function is defined and will be called when token transfer happens. When this
token interacts with other applications, this callback function may introduce a re-entrancy risk.

Staking of ERC-721 Token
Users can stake the ERC-721 token to get rewards in the ERC-20 token.

04. Coverage of issues

The issues that the Fairyproof team covered when conducting the audit include but are not
limited to the following ones:

Re-entrancy Attack
Replay Attack
Reordering Attack
Miner's Advantage
Rollback Attack
DDos Attack
Transaction Ordering Attack
Race Condition
Access Control
Integer Overflow/Underflow
Timestamp Attack
Gas Consumption
Inappropriate Callback Function
Function Visibility
Implementation Vulnerability
Uninitialized Storage Pointer
Arithmetic Precision
Tx.origin
Fake Deposit
Shadow Variable
Parameter Check
Design Vulnerability
Token Issuance
Admin Rights
Inappropriate Proxy Design
Inappropriate Use of Slots
Asset Security
Contract Upgrade/Migration
Code Improvement
Misc

Sumati Token

Presented by Fairyproof5

af://n324
af://n107

05. Severity level reference

Every issue in this report was assigned a severity level from the following:

Critical severity issues need to be fixed as soon as possible.

High severity issues will probably bring problems and should be fixed.

Medium severity issues could potentially bring problems and should eventually be fixed.

Low severity issues are minor details and warnings that can remain unfixed but would be better
fixed at some point in the future.

Informational is not an issue or risk but a suggestion for code improvement.

06. Major areas that need attention

Based on the provided source code the Fairyproof team focused on the possible issues and risks
related to the following functions or areas.

- Integer Overflow/Underflow
We checked all the code sections, which had arithmetic operations and might introduce integer
overflow or underflow if no safe libraries were used. All of them used safe libraries.

We didn't find issues or risks in these functions or areas at the time of writing.

- Access Control
We checked each of the functions that could modify a state, especially those functions that could
only be accessed by "owner".

We didn't find issues or risks in these functions or areas at the time of writing.

Sumati Token

Presented by Fairyproof6

af://n172
af://n188
af://n349
af://n353

- Token Issuance
We checked whether or not the contract files could mint tokens at will.

We found an issue. In Sumati.sol , the admin could mint the ERC-721 token at will. Please refer
to【FP-4】in "08. Issue descriptions" for more details.

- State Update
We checked some key state variables which should only be set at initialization.

We found two issues. In Sumati.sol , if the admin changed the SIGNER it would cause all the
previous signatures invalid. Please refer to【FP-1】in "08. Issue descriptions" for more details.
Additionally in Sumati.sol some addresses were not validated. Please refer to【FP-6】in "08.
Issue descriptions" for more details.

- Asset Security
We checked whether or not all the functions that transfer assets were safely handled.

We didn't find issues or risks in these functions or areas at the time of writing.

- Code Improvement
We checked whether or not there was code that could be improved.

In both Sumati.sol and BOSO.sol , SafeMath was not used and could be removed. Please refer
to【FP-8】in "08. Issue descriptions" for more details. In Sumati.sol the redeem function had
some redundant require statements. Please refer to【FP-9】in "08. Issue descriptions" for more
details.

- Design Vulnerabilities
We checked whether or not there were design vulnerabilities.

In the Sumati.sol contract file, the mintBat function had two conflict require statements.
Please refer to【FP-5】in "08. Issue descriptions" for more details.

In the Sumati.sol contract file, the redeem function had issues in conditional checking. Please
refer to【FP-7】in "08. Issue descriptions" for more details.

In Sumati.sol some transactions needed to be executed in a specific order. Please refer to【FP-
2】in "08. Issue descriptions" for more details.

- Centralized Logic
We checked whether or not some implementation had too much centralized logic.

Sumati Token

Presented by Fairyproof7

af://n357
af://n361
af://n365
af://n388
af://n393
af://n399

Index Title Issue/Risk Severity Status

FP-1
Inappropriate Change

of SIGNER
Design

Vulnerabilities
Low Confirmed

FP-2
Inappropriate Reliance

On Timestamps To
Verify Signatures

Transaction
Ordering Attack

Low Confirmed

FP-3
Excessive Centralized

Logic
Design

Vulnerabilities
Low Confirmed

FP-4 Minting of NFTs At Will Token Issuance Medium ✓ Fixed

FP-5
Conflict require

Statements
Implementation
Vulnerabilities

Medium ✓ Fixed

FP-6
Missing Zero-Address

Check
Parameter

Check
Low ✓ Fixed

FP-7 Incorrect Verification
Design

Vulnerabilities
Low ✓ Fixed

FP-8 Unused Libraries
Code

Improvement
Informational ✓ Fixed

FP-9
Redundant require

Statements
Code

Improvement
Informational ✓ Fixed

In Sumati.sol , the setting of the mint price of the ERC-721 token and the algorithm of the
staking reward were handled by centralized logic. Please refer to【FP-3】in "08. Issue
descriptions" for more details.

- Miscellaneous
Note: a callback function is defined in the ERC-721 token and will be called when token transfer
happens. When the ERC-721 token interacts with other applications, this callback function may
introduce a re-entrancy risk.

Furthermore, in order for a user to stake or withdraw the ERC-721 token by calling a function, the
onERC721Received function in IERC721Receiver must be implemented otherwise the staked
ERC-721 token wouldn't be withdrawn.

07. List of issues by severity

Sumati Token

Presented by Fairyproof8

af://n403
af://n204

08. Issue descriptions

[FP-1] Inappropriate Change of SIGNER Low

Confirmed

Issue/Risk: Design Vulnerabilities

Description:

In Sumati.sol , if the admin changed the SIGNER it would cause all the previous signatures
invalid. Operations of mint , redeem and bosoClaim would be affected.

Recommendation:

Consider not changing SIGNER . If a change is needed, it must be publicly announced to users.

Update:

The Sumati team replied that allowing change of SIGNER was to prevent compromise of
signatures. The team would change SIGNER with great care and publicly announce the change to
users.

Status:

It has been confirmed by the Sumati team.

[FP-2] Inappropriate Reliance On Timestamps To
Verify Signatures Low Confirmed

Issue/Risk: Transaction Ordering Attack

Description:

In Sumati.sol , the mint , mintBat , redeem and bosoClaim functions all used timestamps to
verify whether or not a signature was already used. If a user used a more recent signature in an
earlier transaction, it would cause an earlier signature invalid.

Recommendation:

Consider using parameter hash values to verify signatures as follows:

//mint

require(timeMint[to] < timestamp, "timestamp error");

//mintBat

require(timeBat < timestamp, "timestamp error");

//redeem

require(timeRedeem[to] < timestamp, "timestamp error");

//bosoClaim

require(timeClaim[to] < timestamp, "tokenId not stake");

mapping(bytes32 => bool) public mintHashes;

Sumati Token

Presented by Fairyproof9

af://n226

Update:

The Sumati team replied that this is required by the business logic. If there are conflicts, users
need to contact the Sumati team to get new signatures

Status:

It has been confirmed by the Sumati team.

[FP-3] Excessive Centralized Logic Low Confirmed

Issue/Risk: Design Vulnerabilities

Description:

In Sumati.sol , the setting of the mint price of the ERC-721 token and the algorithm of the
staking reward were handled by off-chain centralized logic.

Recommendation:

Consider open sourcing the off-chain logic and listing the parameters users need to check.

Update:

The Sumati team replied that this was required by the business logic. The team will open source
the off-chain logic.

 function mint(uint256 tokenAmount, address to, uint256 timestamp, bytes memory

sig) public nonReentrant() {

 require(saleIsActive, "Sale must be active to mint ");

 // require(timeMint[to] < timestamp, "timestamp error");

 require(block.timestamp <= timestamp + 6 hours);

 // require((timestamp-timeMint[to]) < 20000000000000, "timestamp error2");

 bytes32 hash = _mintCommon(tokenAmount, to, timestamp, sig);

 require(!mintHashes[hash],"has minted");

 mintHashes[hash] = true;

 }

 function _mintCommon(uint256 tokenAmount, address to, uint256 timestamp, bytes

memory sig) internal returns(bytes32) {

 bytes32 hash = keccak256(abi.encode(tokenAmount, to, timestamp));

 require(

 hash.toEthSignedMessageHash().recover(sig) == SIGNER,

 "PxG: Invalid signature"

);

 if (tokenAmount > 0) {

 assert(IERC20(tokenAddr).transferFrom(msg.sender, dev, tokenAmount));

 }

 _safeMint(to, start);

 nftMap[start] = tokenAmount;

 start = start + 1;

 // timeMint[to] = timestamp;

 return hash;

 }

Sumati Token

Presented by Fairyproof10

Status:

It has been confirmed by the Sumati team.

[FP-4] Minting of NFTs At Will Medium ✓ Fixed

Issue/Risk: Token Issuance

Description:

In Sumati.sol every time when an NFT token was minted its mint price was set by the Sumati
team. In addition the batch mint function mintBat which was controlled by the admin controlled
the mint price as well. Therefore the Sumati team could mint NFTs at will at a zero price.

Recommendation:

Consider adding a constraint for the total number of NFTs the mintBat function could mint.

Update:

The Sumati team added a constraint for the mint price.

Status:

It has been fixed by the Sumati team.

[FP-5] Conflict require Statements Medium

✓ Fixed

Issue/Risk: Implementation Vulnerabilities

Description:

In Sumati.sol the mintBat function had two conflict require statements. If the first require
held true the second would hold false. In addition, SafeMath is no longer needed if the compiler is
Solidity V 0.8 or above.

Recommendation:

Consider changing the code as follows:

Status:

It has been fixed by the Sumati team.

[FP-6] Missing Zero-Address Check Low ✓ Fixed

require(timeBat < timestamp, "timestamp error");

require(timeBat.sub(timestamp) < 100000000, "timestamp error");

require(timeBat < timestamp, "timestamp error");

require((timestamp-timeBat) < 20000000000000, "timestamp error");

Sumati Token

Presented by Fairyproof11

Issue/Risk: Parameter Check

Description:

In Sumati.sol the following addresses didn't have zero-address checks

Recommendation:

Consider changing the code as follows:

Update:

 function setDev(address _addr) public onlyOwner {

 dev = _addr;

 }

 function setSign(address _addr) public onlyOwner {

 SIGNER = _addr;

 }

 function setStakeAddr(address _addr) public onlyOwner {

 stakeAddr = _addr;

 }

 function setBurnAddr(address _addr) public onlyOwner {

 burnAddr = _addr;

 }

 function setToken(address _addr) public onlyOwner {

 tokenAddr = _addr;

 }

 function setDev(address _addr) public onlyOwner {

 require(_addr!=address(0),"addr error");

 dev = _addr;

 }

 function setSign(address _addr) public onlyOwner {

 require(_addr!=address(0),"addr error");

 SIGNER = _addr;

 }

 function setStakeAddr(address _addr) public onlyOwner {

 require(_addr!=address(0),"addr error");

 stakeAddr = _addr;

 }

 function setBurnAddr(address _addr) public onlyOwner {

 require(_addr!=address(0),"addr error");

 burnAddr = _addr;

 }

 function setToken(address _addr) public onlyOwner {

 require(_addr!=address(0),"addr error");

 tokenAddr = _addr;

 }

Sumati Token

Presented by Fairyproof12

The Sumati team added some validation code.

Status:

It has been fixed by the Sumati team.

[FP-7] Incorrect Verification Low ✓ Fixed

Issue/Risk: Design Vulnerabilities

Description:

In Sumati.sol , the redeem function didn't correctly verify `to and msg.sender .

Recommendation:

Consider verifying them correctly.

Update:

The Sumati team added require(to == msg.sender, "to not sender"); to require to to be
msg.sender .

Status:

It has been fixed by the Sumati team.

[FP-8] Unused Libraries Informational ✓ Fixed

Issue/Risk: Code Improvement

Description:

In both Sumati.sol and BOSO.sol , SafeMath was unused.

Recommendation:

Consider removing this library and all the using SafeMath for uint256; statements

Update:

The Sumati team has removed the code

Status:

It has been fixed by the Sumati team.

[FP-9] Redundant require Statements Informational

✓ Fixed

Issue/Risk: Code Improvement

Description:

_safeTransfer(address(this), msg.sender, tokenId, "");

Sumati Token

Presented by Fairyproof13

In Sumati.sol , in the redeem function, the first require was redundant since the second
require could ensure the first require held true.

Recommendation:

Consider removing the first require and keeping the second require as follows:

Update:

The Sumati team has removed the code.

Status:

It has been fixed by the Sumati team.

09. Recommendations to enhance the
overall security

We list some recommendations in this section. They are not mandatory but will enhance the
overall security of the system if they are adopted.

Consider transferring admin rights to multi-sig wallets or DAOs
Consider using contract address + Chain ID + parameters to verify signatures to prevent re-
play attacks that may take place in cross-contract or cross-chain transactions.

Appendix

Unit Test Result:

79.06% Statements 268/339

69.14% Branches 112/162

77.37% Functions 106/137

78.57% Lines 275/350

require(stakeList[tokenId] != address(0), "tokenId not stake");

require(stakeList[tokenId] == msg.sender, "you not staker");

require(stakeList[tokenId] == msg.sender, "you not staker");

Sumati Token

Presented by Fairyproof14

af://n239
af://n567

File Statements Branches Functions Lines

BOSO.sol 100% 44/44 83.33% 10/12 95.65% 22/23 100% 45/45

sumati.sol 75.93% 224/295 68% 102/150 73.68% 84/114 75.41% 230/305

Audited Files' SHA-256 Values:

BOSO.sol: 0x877d38c1dd5d59b8e1d1270315715a020e43ad021f4e43fe69c234e25be1d344

sumati.sol: 0x52ea5733c9474dfb18761f4b88da19d41c211166da391dba2efe4a4b2d3e7f9f

Sumati Token

Presented by Fairyproof15

http://127.0.0.1:5500/coverage/contracts/BOSO.sol.html
http://127.0.0.1:5500/coverage/contracts/sumati.sol.html

	01. Introduction
	— Disclaimer
	— Methodology
	— Structure of the document
	— Documentation
	— Comments from Auditor

	02. About Fairyproof
	03. Major functions of audited code
	Issuance of ERC-20 Token
	Issuance of ERC-721 Token
	Staking of ERC-721 Token

	04. Coverage of issues
	05. Severity level reference
	06. Major areas that need attention
	- Integer Overflow/Underflow
	- Access Control
	- Token Issuance
	- State Update
	- Asset Security
	- Code Improvement
	- Design Vulnerabilities
	- Centralized Logic
	- Miscellaneous

	07. List of issues by severity
	08. Issue descriptions
	09. Recommendations to enhance the overall security
	Appendix

