

 Version 1.0.3

 Serial No. 2021101400042017

 Presented by Fairyproof

 October 14, 2021

01. Introduction

This document includes the results of the audit performed by the Fairyproof team on the
PlatoFarm project, at the request of the SecondSpace team.

Audit Start Time:

Sep 15, 2021

Audit End Time:

Sep 18, 2021

Audited Source Files:

The calculated SHA-256 values for the audited files when the audit was done are as follows:

The source files audited include all the files with the extension "sol" as follows:

Address.sol :

0x0a15051336746f717ac5e409b5187e02b3909e518be4ff9676fa951864ee2562

BlindBox.sol :

0xedfad704fb29d79f68b56d28ae13c13980c8574f29096584a51c96e82fb7893c

Context.sol :

0xb6157e2f04c5f5a3978f0b1f58adcaee8f8cd6c6588255565e255e4321ed8962

EnumerableMap.sol :

0xd642f5550907a3761087b3c0ed755d0bea2f5e818a771407562173cab38cdc3f

EnumerableSet.sol :

0x34d250b8ad1e340a4895e675d50fd61dc7c4c1af71e78f181df92bf5515bc6f5

FreeMarket.sol :

0xc6e98b665d63e05cf4205907f89a379eb3a2a80dc3e73f75e91c6813f4a9d2e4

IERC20Interface.sol:

0x87af74c7b29a4c0efb1e79d82dc47dce70930dbf22c7323563d878159b6e4c9a

Ownable.sol :

0x5049e01e4ff811da2a334cbbcfe699ab7ae6822adb119308d4b573ab3ef71970

PlatoNFT.sol :

0xe32e44b414d175ad6fe51286a7cb7ab38c5d9038d06feaf92a4b6b9cf4a6adc4

ReentrancyGuard.sol:

0xddcca2fb3f5b9dfdee407b871d17b609ded65cdd9ebdb47adf164bd254d3816e

SafeERC20.sol :

0x4f165e3b6b22e05c5f9ab8b3229a5a473c2171c3908eefe9e9a125a51898dcfd

SafeMath.sol :

0xcad066aa4b1b82da17688185639e991dc63185986a66e97d63a0afda12e7aca5

Strings.sol :

0xb5eb7dc2ca7755e912808f59306cd3139f5cec60952983abeaf0a34280e9f0ec

./

├── Address.sol

├── BlindBox.sol

af://n20
https://www.secondspace.game/

The goal of this audit is to review PlatoFarm’s solidity implementation for an NFT game, study
potential security vulnerabilities, its general design and architecture, and uncover bugs that could
compromise the software in production.

We make observations on specific areas of the code that present concrete problems, as well as
general observations that traverse the entire codebase horizontally, which could improve its
quality as a whole.

This audit only applies to the specified code, software or any materials supplied by the
SecondSpace team for specified versions. Whenever the code, software, materials, settings,
enviroment etc is changed, the comments of this audit will no longer apply.

— Disclaimer
Note that as of the date of publishing, the contents of this report reflect the current
understanding of known security patterns and state of the art regarding system security. You
agree that your access and/or use, including but not limited to any associated services, products,
protocols, platforms, content, and materials, will be at your sole risk.

The review does not extend to the compiler layer, or any other areas beyond the programming
language, or other programming aspects that could present security risks. If the audited source
files are smart contract files, risks or issues introduced by using data feeds from offchain sources
are not extended by this review either.

Given the size of the project, the findings detailed here are not to be considered exhaustive, and
further testing and audit is recommended after the issues covered are fixed.

To the fullest extent permitted by law, we disclaim all warranties, expressed or implied, in
connection with this report, its content, and the related services and products and your use
thereof, including, without limitation, the implied warranties of merchantability, fitness for a
particular purpose, and non-infringement.

We do not warrant, endorse, guarantee, or assume responsibility for any product or service
advertised or offered by a third party through the product, any open source or third-party
software, code, libraries, materials, or information linked to, called by, referenced by or accessible
through the report, its content, and the related services and products, any hyperlinked websites,

├── Context.sol

├── EnumerableMap.sol

├── EnumerableSet.sol

├── FreeMarket.sol

├── IERC20Interface.sol

├── Ownable.sol

├── PlatoNFT.sol

├── ReentrancyGuard.sol

├── SafeERC20.sol

├── SafeMath.sol

└── Strings.sol

13 files

af://n39

any websites or mobile applications appearing on any advertising, and we will not be a party to or
in any way be responsible for monitoring any transaction between you and any third-party
providers of products or services.

FOR AVOIDANCE OF DOUBT, THE REPORT, ITS CONTENT, ACCESS, AND/OR USAGE THEREOF,
INCLUDING ANY ASSOCIATED SERVICES OR MATERIALS, SHALL NOT BE CONSIDERED OR RELIED
UPON AS ANY FORM OF FINANCIAL, INVESTMENT, TAX, LEGAL, REGULATORY, OR OTHER ADVICE.

— Methodology
The above files' code was studied in detail in order to acquire a clear impression of how the its
specifications were implemented. The codebase was then subject to deep analysis and scrutiny,
resulting in a series of observations. The problems and their potential solutions are discussed in
this document and, whenever possible, we identify common sources for such problems and
comment on them as well.

The Fairyproof auditing process follows a routine series of steps:

1. Code review that includes the following
i. Review of the specifications, sources, and instructions provided to Fairyproof to make sure
we understand the size, scope, and functionality of the project's source code.
ii. Manual review of code, which is the process of reading source code line-by-line in an
attempt to identify potential vulnerabilities.
iii. Comparison to specification, which is the process of checking whether the code does what
the specifications, sources, and instructions provided to Fairyproof describe.

2. Testing and automated analysis that includes the following:
i. Test coverage analysis, which is the process of determining whether the test cases are
actually covering the code and how much code is exercised when we run the test cases.
ii. Symbolic execution, which is analyzing a program to determine what inputs cause each
part of a program to execute.

3. Best practices review, which is a review of the source code to improve maintainability,
security, and control based on the established industry and academic practices,
recommendations, and research.

— Structure of the document
This report contains a list of issues and comments on all the above source files. Each issue is
assigned a severity level based on the potential impact of the issue and recommendations to fix it,
if applicable. For ease of navigation, an index by topic and another by severity are both provided
at the beginning of the report.

— Documentation
For this audit, we used the following sources of truth about how the NFT game should work:

https://www.secondspace.game

These were considered the specification, and when discrepancies arose with the actual code
behavior, we consulted with the SecondSpace team or reported an issue.

af://n47
af://n58
af://n61
https://www.secondspace.game/

— Comments from Auditee
No vulnerabilities with critical, high, medium or low-severity were found in the above source code.

02. About Fairyproof

Fairyproof is a leading technology firm in the blockchain industry, providing consulting and
security audits for organizations. Fairyproof has developed industry security standards for
designing and deploying blockchain applications.

03. Introduction to PlatoFarm

Plato Farm is a planting NFT management chain game. The game is very interesting. Players own
a small farm in the game, where they can grow (raise) animals and plants, harvest agricultural
products, and sell them to buy other NFT props, building the barren land into a beautiful and
fertile village or city. Players can also establish their own game conference.

04. Major functions of audited code

The audited code implements the following functions:

Issurance of NFT Tokens

ERC-721 based
Interface for Token Issurance
NFT's tokenId is generated based on tokenType, tokenItem and a serial id. A serial id is
incremental.
The max supply for each NFT token under a specific tokenType is 1e11
The Admin can define new or disable existing tokenTypes

NFT Market

Users can trade NFT tokens

af://n67
af://n73
https://www.fairyproof.com/
af://n79
af://n85

Users can create an order including multiple NFT tokens of a same type and a same
item and set a uniform price for these NFT tokens
Users can change NFT token's price
Users need to pay a transaction fee for each NFT token transaction. By default the
transaction fee is set to 0.1%
The Admin can change the transaction fee and the max transaction fee is 1%.

NFT Blind Box

tokenType and tokenItem are randomly generated and used to issue tokens
Able to mint additional tokens by authorization

05. Key points in audit

During the audit, we worked closely with the SecondSpace team, helped fix some issues and
refine some code. Here are the main work items:

- Fixed a Re-entrancy Issue in Blind Box
Source and Description:

In line 149 of BlindBox.sol , the BlindBox.random function had the following code section:

All the parameters excepte msg.sender are predictable. It is very likely that an attacker exploits
this vulnerability to use multiple contracts as msg.senders to repeatedly call this function and get
desirable seeds to do re-entrancy attacks while revert transactions which generate undesirable
seeds.

Recommendation:

Consider disallowing contracts to call this function and only allowing external accounts to call this
function.

 uint256 _seed = uint256(

 keccak256(

 abi.encodePacked(

 block.timestamp

 .add(block.difficulty)

 .add(uint256(keccak256(abi.encodePacked(block.coinbase))) /

now)

 .add(block.gaslimit)

 .add(uint256(keccak256(abi.encodePacked(msg.sender))) / now)

 .add(block.number)

)

)

);

af://n126
af://n130

Update: it has been fixed in the latest code.

- Refined Insecure Randomness in Blind Box
Source and Description:

In line 149 of BlindBox.sol , the BlindBox.random function used insecure seeds to generate
random numbers. Among all the parameters that constitued a seed, coinbase, block.number and
timestamp are predictable. In blockchains such as BSC and HECO, which use POA as their
consensus, block.difficulty is predictable therefore a seed based on these parameters could
be predicted.

Recommendation:

Consider using a VRF algorithm or Chainlink to generate a seed for random numbers

Update: the SecondSpace team has made some changes in the latest code and will fix this issue in
the next upgrade.

- Fixed a Bug in the _remove Function in the
MarketOrders Contract, Which Could Cause an
Order Not Properly Removed

Source and Description:

In line 61 of FreeMarket.sol , the MarketOrders._remove function had the following code
section:

The desired behavior of this function was to swap a specified Order in orderList with the one
at the end of OrderList and then the specified Order would be removed by calling pop .
However the implementation didn't do so, it just swapped two orders' orderIds , not their Order
entities.

 /**

 * @dev Removes the order from order list.

 * Returns true if the order was removed from the list.

 */

 function _remove(uint256 _orderId) internal returns (bool) {

 if (orders[_orderId].owner != address(0)) {

 uint256 lastIndex = orderList.length - 1;

 orderList[lastIndex].id = _orderId;

 orderList[_orderId] = orderList[lastIndex];

 orderList.pop();

 delete orders[lastIndex];

 return true;

 } else {

 return false;

 }

 }

af://n140
af://n148

Recommendation:

Consider swapping two Orders not just their order ids . In addition consider referring to
Openzeppelin's implementation for remove in the EmerationSet contract.

We don't suggest swapping ids since an order's id is in general strictly associated with the order
it specifies.

Update: it has been fixed in the latest code.

- Refined Order's Data Structure in the
MarketOrders Contract to Reduce Gas Consumption

Source and Description:

In line 40 of FreeMarket.sol , the MarketOrders.orders variable had the following definition:

This definition had both array and mapping. This would incur relatively high gas consumption.

Recommendation:

Consider putting Order in a list and defining the value in the mapping as index. Please refer
to Openzeppelin's design for EmerationSet .

Update: it has been fixed in the latest code.

- Refined Implementation of the orderList.remain
Function in FreeMarket.buyOrder

Source and Description:

In line 215 of the FreeMarket.sol contract, the MarketOrders.buyOrder function had the
following code section:

The directives with remain can be simplied and removed from the loop to reduce the gas
consumption.

Recommendation:

 Order[] public orderList;

 mapping (uint256 => Order) public orders; // Order by index of order list

 for (uint256 i = order_.remain - 1; i >= order_.remain - amount; i--) {

 //...

 orderList[orderId].remain--;

 orders[orderId].remain--;

 }

af://n159
af://n169

Consider removing the directives with remain from the loop and use
orderList[orderId].remain - amount to replace them.

Update: it has been fixed in the latest code.

- Added Boundaries to FreeMarket's Transaction
Fees

Source and Description:

In line 260 of the FreeMarket.sol contract , the MarketOrders.setFee function didn't have
boundaries for the transaction fees.

Recommendation:

Consider adding boundaries to the transaction fees. When the transaction fee was set to 0, a buy
order could fail. If the transaction fee was set to be greater than 0 this issue could be fixed.

Update: it has been fixed in the latest code.

- Fixed a Bug in Algorithm to Calculate a Token's
Item

Source and Description:

In line 143 of the FreeMarket.sol contract, the MarketOrders.getItem function had the
following code section:

Based on the rules defined in the PlatoNFT contract, which generate a tokenId , each type has
100 items. However the getItem function only returned 10 items. If various types are considered
the number of items should be:

So the function's algorithm was incorrect.

Recommendation:

Consider doing either of the two ways:

If various types are considered, the number of items returned are _tokenId.div(itemMax)
otherwise the number of items are _tokenId.div(itemMax).mod(100) .

Update: the SecondSpace team agrees that the algorithm to calculate item should take various
types into account and the correct algorithm should be _tokenId.div(itemMax) . It has been
fixed in the latest code.

function getItem(uint256 _tokenId) public pure returns(uint256) {

 return _tokenId.div(itemMax).mod(10);

}

af://n179
af://n187

- Fixed An Issue in Constant Definition Which
Caused Confusion

Source and Description:

The following code had an issue:

The itemMax constant was defined both in FreeMarket and PlatoNFT and the values were 1e9
and 1e8 respectively. In PlatoNFT , the algorithm which used itemMax mutiplied itemMax by
10. Therefore itemMax could be defined as a universal value used in both.

Recommendation:

Consider defining itemMax as a constant value used in both FreeMarket and PlatoNFT to
prevent confusion.

Update: it has been fixed in the latest code.

- Fixed an Overflow Issue in tokenItem in PlatoNFT
Source and Description:

In line 657 of the PlatoNFT.sol contract, the PlatoNFT.mint function had the following code
section:

In the code each type of token had 100 items. The value of tokenItem was a 2-digit number
and the range was from 0~99. However if the value of tokenItem was greater than100, an
overflow would happen and the tokenType would be unexpected.

Recommendation:

Consider adding a constraint to tokenItem and restricting its value to be less than 100

Update: it has been fixed in the latest code.

 uint256 tokenId = tokenType

 .mul(typeMax * 10)

 .add(tokenItem.mul(itemMax * 10))

 .add(currentSupplyCount.add(1));

 function mint(address to, uint256 tokenType, uint256 tokenItem, string

memory tokenURI) public onlyMinter returns(uint256) {

 require(typeActive[tokenType], "token type not exist");

 require(itemSupply[tokenType][tokenItem] < itemMaxSupply, "Mint exceeds

the maximum limit of item");

af://n200
af://n210

06. Coverage of issues
The issues that the Fairyproof team covered when conducting the audit include but are not
limited to the following ones:

Re-entrancy Attack
DDos Attack
Integer Overflow
Function Visibility
Logic Vulnerability
Uninitialized Storage Pointer
Arithmetic Precision
Tx.origin
Shadow Variable
Design Vulnerability
Token Issurance
Asset Security
Access Control

07. Severity level reference

Every issue in this report was assigned a severity level from the following:

Critical severity issues need to be fixed as soon as possible.

High severity issues will probably bring problems and should be fixed.

Medium severity issues could potentially bring problems and should eventually be fixed.

Low severity issues are minor details and warnings that can remain unfixed but would be better
fixed at some point in the future.

08. List of issues by severity

af://n222
af://n254
af://n268
af://n270

A. Critical

- N/A

B. High

- N/A

C. Medium

- N/A

D. Low

- Insecure Randomness in Randome Number Generation

09. Issue descriptions

- Insecure Randomness in Randome Number
Generation: Low

Source and Description:

The seed that is used to generate randome numbers for NFT issurance uses onchain data which
doesn't provide secure randomness.

Recommendation:

Consider using a VRF algorithm or Chainlink to generate a seed.

Update: the SecondSpace team plans to to use offchain random numbers in the next upgrade.

10. Recommendations to enhance the
overall security

af://n270
af://n271
af://n273
af://n274
af://n276
af://n277
af://n279
af://n280
af://n285
af://n287
af://n297

We list some recommendations in this section. They are not mandatory but will enhance the
overall security of the system if they are adopted.

- N/A

af://n300

	01. Introduction
	— Disclaimer
	— Methodology
	— Structure of the document
	— Documentation
	— Comments from Auditee

	02. About Fairyproof
	03. Introduction to PlatoFarm
	04. Major functions of audited code
	05. Key points in audit
	- Fixed a Re-entrancy Issue in Blind Box
	- Refined Insecure Randomness in Blind Box
	- Fixed a Bug in the _remove Function in the MarketOrders Contract, Which Could Cause an Order Not Properly Removed
	- Refined Order's Data Structure in the MarketOrders Contract to Reduce Gas Consumption
	- Refined Implementation of the orderList.remain Function in FreeMarket.buyOrder
	- Added Boundaries to FreeMarket's Transaction Fees
	- Fixed a Bug in Algorithm to Calculate a Token's Item
	- Fixed An Issue in Constant Definition Which Caused Confusion
	- Fixed an Overflow Issue in tokenItem in PlatoNFT

	06. Coverage of issues
	07. Severity level reference
	08. List of issues by severity
	A. Critical
	- N/A

	B. High
	- N/A

	C. Medium
	- N/A

	D. Low
	- Insecure Randomness in Randome Number Generation

	09. Issue descriptions
	- Insecure Randomness in Randome Number Generation: Low

	10. Recommendations to enhance the overall security
	- N/A

