
Pink BNB Token

Version 1.0.0

Serial No. 2023030400012017

Presented by Fairyproof

March 4, 2023

01. Introduction

This document includes the results of the audit performed by the Fairyproof team on the Pink BNB Token
Issuance project.

Audit Start Time:

March 3, 2023

Audit End Time:

March 4, 2023

Audited Source File's Address:

https://bscscan.com/address/0xf5BDe7Eb378661F04C841B22bA057326B0370153#code

The goal of this audit is to review Pink BNB’s solidity implementation for its Token Issuance function, study
potential security vulnerabilities, its general design and architecture, and uncover bugs that could
compromise the software in production.

We make observations on specific areas of the code that present concrete problems, as well as general
observations that traverse the entire codebase horizontally, which could improve its quality as a whole.

This audit only applies to the specified code, software or any materials supplied by the Pink BNB team for
specified versions. Whenever the code, software, materials, settings, environment etc is changed, the
comments of this audit will no longer apply.

— Disclaimer
Note that as of the date of publishing, the contents of this report reflect the current understanding of
known security patterns and state of the art regarding system security. You agree that your access and/or
use, including but not limited to any associated services, products, protocols, platforms, content, and
materials, will be at your sole risk.

The review does not extend to the compiler layer, or any other areas beyond the programming language, or
other programming aspects that could present security risks. If the audited source files are smart contract
files, risks or issues introduced by using data feeds from offchain sources are not extended by this review
either.

Given the size of the project, the findings detailed here are not to be considered exhaustive, and further
testing and audit is recommended after the issues covered are fixed.

To the fullest extent permitted by law, we disclaim all warranties, expressed or implied, in connection with
this report, its content, and the related services and products and your use thereof, including, without
limitation, the implied warranties of merchantability, fitness for a particular purpose, and non-infringement.

PinkBNB Token

Presented by Fairyproof1

Fa
ir
yp
ro
of

https://bscscan.com/address/0xf5BDe7Eb378661F04C841B22bA057326B0370153#code

We do not warrant, endorse, guarantee, or assume responsibility for any product or service advertised or
offered by a third party through the product, any open source or third-party software, code, libraries,
materials, or information linked to, called by, referenced by or accessible through the report, its content,
and the related services and products, any hyperlinked websites, any websites or mobile applications
appearing on any advertising, and we will not be a party to or in any way be responsible for monitoring any
transaction between you and any third-party providers of products or services.

FOR AVOIDANCE OF DOUBT, THE REPORT, ITS CONTENT, ACCESS, AND/OR USAGE THEREOF, INCLUDING
ANY ASSOCIATED SERVICES OR MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF
FINANCIAL, INVESTMENT, TAX, LEGAL, REGULATORY, OR OTHER ADVICE.

— Methodology
The above files' code was studied in detail in order to acquire a clear impression of how the its
specifications were implemented. The codebase was then subject to deep analysis and scrutiny, resulting in
a series of observations. The problems and their potential solutions are discussed in this document and,
whenever possible, we identify common sources for such problems and comment on them as well.

The Fairyproof auditing process follows a routine series of steps:

1. Code Review, Including:

Project Diagnosis

Understanding the size, scope and functionality of your project’s source code based on the specifications,
sources, and instructions provided to Fairyproof.

Manual Code Review

Reading your source code line-by-line to identify potential vulnerabilities.

Specification Comparison

Determining whether your project’s code successfully and efficiently accomplishes or executes its functions
according to the specifications, sources, and instructions provided to Fairyproof.

2. Testing and Automated Analysis, Including:

Test Coverage Analysis

Determining whether the test cases cover your code and how much of your code is exercised or executed
when test cases are run.

Symbolic Execution

Analyzing a program to determine the specific input that causes different parts of a program to execute its
functions.

3. Best Practices Review

Reviewing the source code to improve maintainability, security, and control based on the latest established
industry and academic practices, recommendations, and research.

PinkBNB Token

Presented by Fairyproof2

Fa
ir
yp
ro
of

Serial Number Auditor Audit Time Result

2023030400012017 Fairyproof Security Team Mar 3, 2023 - Mar 4, 2023 Passed

— Structure of the document
This report contains a list of issues and comments on all the above source files. Each issue is assigned a
severity level based on the potential impact of the issue and recommendations to fix it, if applicable. For
ease of navigation, an index by topic and another by severity are both provided at the beginning of the
report.

— Documentation
For this audit, we used the following source(s) of truth about how the token issuance function should work:

Website:https://pnb.world/

Source Code: https://bscscan.com/address/0xf5BDe7Eb378661F04C841B22bA057326B0370153#code

These were considered the specification, and when discrepancies arose with the actual code behavior, we
consulted with the Pink BNB team or reported an issue.

— Comments from Auditor

Summary:

The Fairyproof security team used its auto analysis tools and manual work to audit the project. During the
audit, one issue of low-severity was uncovered. The Pink BNB team has fixed this issue.

02. About Fairyproof

PinkBNB Token

Presented by Fairyproof3

Fa
ir
yp
ro
of

https://pnb.world/
https://bscscan.com/address/0xf5BDe7Eb378661F04C841B22bA057326B0370153#code

02. About Fairyproof

Fairyproof is a leading technology firm in the blockchain industry, providing consulting and security audits
for organizations. Fairyproof has developed industry security standards for designing and deploying
blockchain applications.

03. Introduction to Pink BNB

It's designed to collect large amounts of data about the cryptocurrency industry, label training data and
analyze the data for correlations and patterns, and use these patterns to make predictions about future
states.

This system consists of 3 major layers, user interface(UI), crawler, and Artificial intelligence(AI). Each layer
has different roles to give users the best and fastest experience.

The above description is quoted from relevant documents of Pink BNB.

04. Major functions of audited code

The audited code mainly implements a token issuance function. Here are the details:

Blockchain: BNB Chain

Token Standard: ERC20

Token Address: 0xf5BDe7Eb378661F04C841B22bA057326B0370153

Token Name: Pink BNB

Token Symbol: PNB

Decimals: 18

Current Supply: 100,000,000,000,000

Max Supply: 100,000,000,000,000

Note:

PinkBNB Token

Presented by Fairyproof4

Fa
ir
yp
ro
of

https://www.fairyproof.com/

1% tax will be charged based on the amount transferred when tokens are transferred.
0.2% tax on the transferred amount is sent to the zero address and 0.8% tax on the transferred amount is
sent to the team's address.

05. Coverage of issues

The issues that the Fairyproof team covered when conducting the audit include but are not limited to the
following ones:

Access Control

Admin Rights

Arithmetic Precision

Code Improvement

Contract Upgrade/Migration

Delete Trap

Design Vulnerability

DoS Attack

EOA Call Trap

Fake Deposit

Function Visibility

Gas Consumption

Implementation Vulnerability

Inappropriate Callback Function

Injection Attack

Integer Overflow/Underflow

IsContract Trap

Miner's Advantage

Misc

Price Manipulation

Proxy selector clashing

Pseudo Random Number

Re-entrancy Attack

Replay Attack

Rollback Attack

Shadow Variable

PinkBNB Token

Presented by Fairyproof5

Fa
ir
yp
ro
of

Slot Conflict

Token Issuance

Tx.origin Authentication

Uninitialized Storage Pointer

06. Severity level reference

Every issue in this report was assigned a severity level from the following:

Critical severity issues need to be fixed as soon as possible.

High severity issues will probably bring problems and should be fixed.

Medium severity issues could potentially bring problems and should eventually be fixed.

Low severity issues are minor details and warnings that can remain unfixed but would be better fixed at
some point in the future.

Informational is not an issue or risk but a suggestion for code improvement.

07. Major areas that need attention

Based on the provided source code the Fairyproof team focused on the possible issues and risks related to
the following functions or areas.

- Function Implementation
We checked whether or not the functions were correctly implemented.
We found one issue, for more details please refer to [FP-1] in "09. Issue description".

- Access Control

PinkBNB Token

Presented by Fairyproof6

Fa
ir
yp
ro
of

Index Title Issue/Risk Severity Status

FP-1
Owner Can Recover After Abandonment under Certain

Conditions
Admin
Rights

Low
✓

Fixed

- Access Control
We checked each of the functions that could modify a state, especially those functions that could only be
accessed by owner or administrator
We didn't find issues or risks in these functions or areas at the time of writing.

- Token Issuance & Transfer
We examined token issuance and transfers for situations that could harm the interests of holders.
We didn't find issues or risks in these functions or areas at the time of writing.

- State Update
We checked some key state variables which should only be set at initialization.
We didn't find issues or risks in these functions or areas at the time of writing.

- Asset Security
We checked whether or not all the functions that transfer assets were safely handled.
We didn't find issues or risks in these functions or areas at the time of writing.

- Miscellaneous
We checked the code for optimization and robustness.
We didn't find issues or risks in these functions or areas at the time of writing.

08. List of issues by severity

09. Issue descriptions

PinkBNB Token

Presented by Fairyproof7

Fa
ir
yp
ro
of

09. Issue descriptions

[FP-1] Owner Can Recover After Abandonment under
Certain Conditions

Admin Rights Low ✓ Fixed

Issue/Risk: Admin Rights

Description:

The function abandonOwnership is used to abandon the ownership, but the function does not reset the
value of _NEW_OWNER_ . If _NEW_OWNER_ has a valid value(address), the address can actually recover the
ownership by calling the claimOwnership function even after the ownership is abandoned . Considering
that the owner is only used to set the team's address to receive the tax of transferring tokens, it has no
effect on regular users, the risk can be avoided through careful operations, so the risk is marked as low-
severity.

Recommendation:

Since the contract has been deployed, it is recommended to call the transferOwnership function to reset
_NEW_OWNER_ to zero before calling the abandonOwnership function.

Update/Status:

The Pink BNB team has revoked the ownership and the issue will never happen.

10. Recommendations to enhance the overall
security

We list some recommendations in this section. They are not mandatory but will enhance the overall security
of the system if they are adopted.

- N/A

11. Appendices

PinkBNB Token

Presented by Fairyproof8

Fa
ir
yp
ro
of

11.1 Unit Test

1. PinkBNB.t.js

const { expect, assert } = require("chai");

const { ethers } = require("hardhat");

describe("Unit test of PinkBNT token deployed on BNB Chain", function () {

 let owner,user1,user2,users;
 let instance;
 const init_supply = ethers.utils.parseEther("100000000000000");
 const ZERO_ADDRESS = ethers.constants.AddressZero;
 const BURN_TAX_RATE = 20;
 const TRADE_TAX_RATE = 80;

 async function deployTokensAndInit() {
 [owner, user1, user2, ...users] = await ethers.getSigners();
 const CustomERC20 = await ethers.getContractFactory("CustomERC20");
 instance = await CustomERC20.deploy();
 let args = [
 owner.address,init_supply,"Pink BNB",
"PNB",18,BURN_TAX_RATE,TRADE_TAX_RATE,users[0].address

]
 await instance.init(...args)
 }

 beforeEach(async () =>{
 await deployTokensAndInit();
 });

 describe("Initial state unit test", () => {
 it("Call init twice should be failed", async () => {
 let args = [
 owner.address,init_supply,"Pink BNB",
"PNB",18,BURN_TAX_RATE,TRADE_TAX_RATE,users[0].address

]
 await
expect(instance.init(...args)).to.be.revertedWith("DODO_INITIALIZED");

 await
expect(instance.initOwner(user1.address)).to.be.revertedWith("DODO_INITIALIZED");

 });

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

PinkBNB Token

Presented by Fairyproof9

Fa
ir
yp
ro
of

 it(("Initial state should equal with the params of constructor"), async ()
=> {

 expect(await instance._OWNER_()).to.be.equal(owner.address);
 expect(await instance._NEW_OWNER_()).to.be.equal(ZERO_ADDRESS);
 expect(await instance.name()).to.be.equal("Pink BNB");
 expect(await instance.symbol()).to.be.equal("PNB");
 expect(await instance.decimals()).to.be.equal(18);
 expect(await instance.tradeBurnRatio()).to.be.equal(BURN_TAX_RATE);
 expect(await instance.tradeFeeRatio()).to.be.equal(TRADE_TAX_RATE);
 expect(await instance.team()).to.be.equal(users[0].address);
 expect(await
instance.balanceOf(owner.address)).to.be.equal(init_supply);

 expect(await instance.totalSupply()).to.be.equal(init_supply);
 });
 });

 describe("Owner and OnlyOwner unit test", () => {
 it("Only owner can transfer ownership", async () => {
 await
expect(instance.connect(user1).transferOwnership(user1.address)).to.be.revertedWit

h("NOT_OWNER");

 await expect(instance.transferOwnership(user1.address)).to.be.emit(
 instance,"OwnershipTransferPrepared"
).withArgs(owner.address,user1.address);
 });

 it("TransferOwnership can reset _NEW_OWNER_", async () => {
 await instance.transferOwnership(user1.address);
 expect(await instance._NEW_OWNER_()).to.be.equal(user1.address);
 await instance.transferOwnership(ZERO_ADDRESS);
 expect(await instance._NEW_OWNER_()).to.be.equal(ZERO_ADDRESS);
 });

 it("Only new owner can claim ownership", async () => {
 await instance.transferOwnership(user1.address);
 expect(await instance._NEW_OWNER_()).to.be.equal(user1.address);
 await
expect(instance.connect(user2).claimOwnership()).to.be.revertedWith("INVALID_CLAIM

");

 await expect(instance.connect(user1).claimOwnership()).to.be.emit(
 instance,"OwnershipTransferred"
).withArgs(owner.address,user1.address);
 expect(await instance._OWNER_()).to.be.equal(user1.address);
 expect(await instance._NEW_OWNER_()).to.be.equal(ZERO_ADDRESS);
 });

 it("AbandonOwnership should set owner to zero address", async () => {

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

PinkBNB Token

Presented by Fairyproof10

Fa
ir
yp
ro
of

 await
expect(instance.abandonOwnership(user2.address)).to.be.revertedWith("NOT_ZERO_ADDR

ESS");

 await expect(instance.abandonOwnership(ZERO_ADDRESS)).to.be.emit(
 instance,"OwnershipTransferred"
).withArgs(owner.address,ZERO_ADDRESS);
 expect(await instance._OWNER_()).to.be.equal(ZERO_ADDRESS);
 });

 it("AbandonOwnership should reset the value of _NEW_OWNER_", async () =>
{

 // transfer ownership
 await instance.transferOwnership(user1.address);
 // AbandonOwnership
 await instance.abandonOwnership(ZERO_ADDRESS);
 expect(await instance._OWNER_()).to.be.equal(ZERO_ADDRESS);
 expect(await instance._NEW_OWNER_()).to.be.equal(user1.address);
 await instance.connect(user1).claimOwnership();
 expect(await instance._OWNER_()).to.be.equal(ZERO_ADDRESS);
 });
 });

 describe("changeTeamAccount unit test", () => {
 it("Should change state and emit event", async () => {
 await expect(instance.changeTeamAccount(users[1].address)).to.be.emit(
 instance,"ChangeTeam"
).withArgs(users[0].address,users[1].address);
 expect(await instance.team()).to.be.equal(users[1].address);
 });
 });

 describe("Transfer test", () => {
 it("Transfer to zero address should be failed", async () => {
 await
expect(instance.transfer(ZERO_ADDRESS,100)).to.be.revertedWith("ERC20: transfer to

the zero address");

 });

 it("Transfer zero value should always be successful", async () => {
 expect(await instance.balanceOf(user1.address)).to.be.equal(0);
 await instance.connect(user1).transfer(user2.address,0);
 });

 it("Transfer token beyond balance should be failed", async () => {
 await
expect(instance.connect(user1).transfer(user2.address,10)).to.be.revertedWith(

 "ERC20: transfer amount exceeds balance"
);
 });

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

PinkBNB Token

Presented by Fairyproof11

Fa
ir
yp
ro
of

 it("Transfer token should be taxed", async () => {
 let amount = 1000000;
 let burn_fee = 1000000 * BURN_TAX_RATE / 10000;
 let trade_fee = 1000000 * TRADE_TAX_RATE / 10000;
 await expect(instance.transfer(user1.address,amount)).to.be.emit(
 instance,"Transfer"
).withArgs(owner.address,user1.address,amount - burn_fee - trade_fee);
 expect(await
instance.balanceOf(owner.address)).to.be.equal(init_supply.sub(amount));

 expect(await instance.balanceOf(user1.address)).to.be.equal(amount -
burn_fee - trade_fee);

 expect(await instance.balanceOf(ZERO_ADDRESS)).to.be.equal(burn_fee);
 expect(await
instance.balanceOf(users[0].address)).to.be.equal(trade_fee);

 });

 it("Transfer to self should only be taxed", async () => {
 await instance.transfer(user1.address,100000);
 let balance_before = 100000 * 99 / 100;
 expect(await
instance.balanceOf(user1.address)).to.be.equal(balance_before);

 let amount = 1000;
 await instance.connect(user1).transfer(user1.address,amount);
 let balance_after = await instance.balanceOf(user1.address);
 expect(balance_after).to.be.equal(balance_before - amount / 100);
 });
 })

 describe("Approve and transferFrom unit test", () => {
 it("Approve should change allowance and change state", async () => {
 expect(await
instance.allowance(owner.address,user1.address)).to.be.equal(0);

 await expect(instance.approve(user1.address,1000)).to.be.emit(
 instance,"Approval"
).withArgs(owner.address,user1.address,1000);

 expect(await
instance.allowance(owner.address,user1.address)).to.be.equal(1000);

 });

 it("Transfer from should change allowance", async () => {
 await
expect(instance.connect(user1).transferFrom(owner.address,user1.address,1000)).to.

be.revertedWith(

 "ALLOWANCE_NOT_ENOUGH"
);
 await instance.approve(user1.address,10000);

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

PinkBNB Token

Presented by Fairyproof12

Fa
ir
yp
ro
of

2. UnitTestOutput

 await
expect(instance.connect(user1).transferFrom(owner.address,user1.address,1000)).to.

be.emit(

 instance,"Transfer"
).withArgs(owner.address,user1.address, 1000 * 99 /100);
 expect(await
instance.allowance(owner.address,user1.address)).to.be.equal(10000 - 1000);

 });
 });
});

162

163

164

165

166

167

168

169

Unit test of PinkBNT token deployed on BNB Chain

 Initial state unit test
 ✔ Call init twice should be failed (62ms)
 ✔ Initial state should be equal with the params of constructor (65ms)
 Owner and OnlyOwner unit test
 ✔ Only owner can transfer ownership
 ✔ TransferOwnership can reset _NEW_OWNER_
 ✔ Only new owner can claim ownership (52ms)
 ✔ AbandonOwnership should set owner to zero address
 1) AbandonOwnership should reset the value of _NEW_OWNER_
 changeTeamAccount unit test
 ✔ Should change state and emit event
 Transfer test
 ✔ Transfer to zero address should be failed
 ✔ Transfer zero value should always be successful
 ✔ Transfer token beyond balance should be failed
 ✔ Transfer token should be taxed
 ✔ Transfer to self should only be taxed
 Approve and transferFrom unit test
 ✔ Approve should change allowance and change state
 ✔ Transfer from should change allowance (42ms)

 14 passing (2s)
 1 failing

 1) Unit test of PinkBNT token deployed on BNB Chain
 Owner and OnlyOwner unit test
 AbandonOwnership should reset the value of _NEW_OWNER_:

 AssertionError: expected '0x70997970C51812dc3A010C7d01b50e0d17d…' to equal
'0x00000000000000000000000000000000000…'

 + expected - actual

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

PinkBNB Token

Presented by Fairyproof13

Fa
ir
yp
ro
of

Index Function Visibility
Permission
Check

Re-
entrancy
Check

Injection
Check

Unit
Test

Notes

1 init(address,uint256,string,string,uint8,uint256,uint256,address) public Passed notInitialized

2 transfer(address,uint256) public Passed

3 balanceOf(address) public Passed View

4 transferFrom(address,address,uint256) public Passed

5 approve(address,uint256) public Passed

6 allowance(address,address) public Passed View

7 changeTeamAccount(address) external onlyOwner Passed

8 abandonOwnership(address) external onlyOwner Failed

9 initOwner(address) public Passed notInitialized

10 transferOwnership(address) public onlyOwner Passed

11 claimOwnership() public onlyNewOwner Passed

11.2 External Functions Check Points

1. PinkBNB.md

File: contracts/PinkBNB.sol

(Empty elements in the table represent things that are not required or relevant)

contract: CustomERC20 is InitializableOwnable

 -0x70997970C51812dc3A010C7d01b50e0d17dc79C8
 +0x00

 at Context.<anonymous> (test/PinkBNB.t.js:93:52)
 at processTicksAndRejections (internal/process/task_queues.js:95:5)
 at runNextTicks (internal/process/task_queues.js:64:3)
 at listOnTimeout (internal/timers.js:524:9)
 at processTimers (internal/timers.js:498:7)

33

34

35

36

37

38

39

40

41

42

PinkBNB Token

Presented by Fairyproof14

Fa
ir
yp
ro
of

	01. Introduction
	— Disclaimer
	— Methodology
	— Structure of the document
	— Documentation
	— Comments from Auditor

	02. About Fairyproof
	03. Introduction to Pink BNB
	04. Major functions of audited code
	05. Coverage of issues
	06. Severity level reference
	07. Major areas that need attention
	- Function Implementation
	- Access Control
	- Token Issuance & Transfer
	- State Update
	- Asset Security
	- Miscellaneous

	08. List of issues by severity
	09. Issue descriptions
	10. Recommendations to enhance the overall security
	- N/A

	11. Appendices
	11.1 Unit Test
	1. PinkBNB.t.js
	2. UnitTestOutput

	11.2 External Functions Check Points
	1. PinkBNB.md
	File: contracts/PinkBNB.sol

