
Panaroma Token

Version 1.0.0

Serial No. 2022100600012016

Presented by Fairyproof

October 6, 2022

01. Introduction

This document includes the results of the audit performed by the Fairyproof team on the
Panaroma token project.

Audit Start Time:

September 5, 2022

Audit End Time:

October 6, 2022

https://github.com/Panaroma-Finance/Panaroma-Token-Smart-Contract

Audited Code's Github Commit Number When Audit Started:

bf38348f1093ae6892bd0b28f66aee37808299e9

Audited Code's Github Commit Number When Audit Ended:

eeb47b271942ddf42ce2aa3c9cf16a590877c333

Audited Source Files:

The calculated SHA-256 value for the audited file when the audit was done is as follows:

The source files audited include all the files with the extension "sol" as follows:

The goal of this audit is to review Panaroma’s solidity implementation for its token issuance
function, study potential security vulnerabilities, its general design and architecture, and uncover
bugs that could compromise the software in production.

We make observations on specific areas of the code that present concrete problems, as well as
general observations that traverse the entire codebase horizontally, which could improve its quality
as a whole.

This audit only applies to the specified code, software or any materials supplied by the Panaroma
team for specified versions. Whenever the code, software, materials, settings, environment etc is
changed, the comments of this audit will no longer apply.

PanaromaToken.sol:

0xcb7056974354c027628a1b039a63f877cdaf2a7e752b577160699dbd1c54ed85

./

└── PanaromaToken.sol

0 directories, 1 file

Panaroma Token

Presented by Fairyproof1

Fa
ir
yp
ro
of

af://n0
https://github.com/Panaroma-Finance/Panaroma-Token-Smart-Contract

— Disclaimer
Note that as of the date of publishing, the contents of this report reflect the current understanding
of known security patterns and state of the art regarding system security. You agree that your
access and/or use, including but not limited to any associated services, products, protocols,
platforms, content, and materials, will be at your sole risk.

The review does not extend to the compiler layer, or any other areas beyond the programming
language, or other programming aspects that could present security risks. If the audited source
files are smart contract files, risks or issues introduced by using data feeds from offchain sources
are not extended by this review either.

Given the size of the project, the findings detailed here are not to be considered exhaustive, and
further testing and audit is recommended after the issues covered are fixed.

To the fullest extent permitted by law, we disclaim all warranties, expressed or implied, in
connection with this report, its content, and the related services and products and your use
thereof, including, without limitation, the implied warranties of merchantability, fitness for a
particular purpose, and non-infringement.

We do not warrant, endorse, guarantee, or assume responsibility for any product or service
advertised or offered by a third party through the product, any open source or third-party
software, code, libraries, materials, or information linked to, called by, referenced by or accessible
through the report, its content, and the related services and products, any hyperlinked websites,
any websites or mobile applications appearing on any advertising, and we will not be a party to or
in any way be responsible for monitoring any transaction between you and any third-party
providers of products or services.

FOR AVOIDANCE OF DOUBT, THE REPORT, ITS CONTENT, ACCESS, AND/OR USAGE THEREOF,
INCLUDING ANY ASSOCIATED SERVICES OR MATERIALS, SHALL NOT BE CONSIDERED OR RELIED
UPON AS ANY FORM OF FINANCIAL, INVESTMENT, TAX, LEGAL, REGULATORY, OR OTHER ADVICE.

— Methodology
The above files' code was studied in detail in order to acquire a clear impression of how the its
specifications were implemented. The codebase was then subject to deep analysis and scrutiny,
resulting in a series of observations. The problems and their potential solutions are discussed in
this document and, whenever possible, we identify common sources for such problems and
comment on them as well.

The Fairyproof auditing process follows a routine series of steps:

1. Code Review, Including:

Project Diagnosis

Understanding the size, scope and functionality of your project’s source code based on the
specifications, sources, and instructions provided to Fairyproof.

Manual Code Review

Reading your source code line-by-line to identify potential vulnerabilities.

Panaroma Token

Presented by Fairyproof2

Fa
ir
yp
ro
of

af://n25
af://n33

Serial Number Auditor Audit Time Result

2022100600012016 Fairyproof Team 2022.09.05 - 2022.10.6 Low Risk

Specification Comparison

Determining whether your project’s code successfully and efficiently accomplishes or executes its
functions according to the specifications, sources, and instructions provided to Fairyproof.

2. Testing and Automated Analysis, Including:

Test Coverage Analysis

Determining whether the test cases cover your code and how much of your code is exercised or
executed when test cases are run.

Symbolic Execution

Analyzing a program to determine the specific input that causes different parts of a program to
execute its functions.

 3. Best Practices Review

Reviewing the source code to improve maintainability, security, and control based on the latest
established industry and academic practices, recommendations, and research.

— Structure of the document
This report contains a list of issues and comments on all the above source files. Each issue is
assigned a severity level based on the potential impact of the issue and recommendations to fix it,
if applicable. For ease of navigation, an index by topic and another by severity are both provided at
the beginning of the report.

— Documentation
For this audit, we used the following sources of truth about how the token issuance function
should work:

Contract Source Code

This was considered the specification, and when discrepancies arose with the actual code behavior,
we consulted with the Panaroma team or reported an issue.

— Comments from Auditor

Panaroma Token

Presented by Fairyproof3

Fa
ir
yp
ro
of

af://n65
af://n68
af://n74

Summary:

The Fairyproof security team used its auto analysis tools and manual work to audit the project.
During the audit, one issue of high-severity, two issues of medium-severity, one issue of low-
severity and two issues of informational-severity were uncovered. The Panaroma team fixed one
risk of high-severity, one issue of medium-severity and two issues of informational-severity, and
acknowledged one issue of medium-severity and one issue of low-severity.

02. About Fairyproof

Fairyproof is a leading technology firm in the blockchain industry, providing consulting and security
audits for organizations. Fairyproof has developed industry security standards for designing and
deploying blockchain applications.

03. Major functions of audited code

The audited code mainly implements the following function:

Token Issuance:

Token Implementation: Non-standard ERC-20 Token

Address: 0xa60E0DF948708764F5397e556973a520Db378598 (Ethereum)

Token Name: Panaroma Token

Token Symbol: PANA

Panaroma Token

Presented by Fairyproof4

Fa
ir
yp
ro
of

af://n94
https://www.fairyproof.com/
af://n100

Token Decimals: 8

Total Supply: 500,000,000

Subsequent Minting: Yes

Contract Upgradeable: Yes

Burn: Yes

Pausable: Yes

Transfer Can be Frozen: Yes (Blacklist)

Note: this contract is implemented by referring to the USDT's implementation and is not a standard
ERC-20 token. Some of the functions don't have a return value. When interacting with other smart
contracts, this should be kept in mind.

04. Coverage of issues

The issues that the Fairyproof team covered when conducting the audit include but are not limited
to the following ones:

Re-entrancy Attack
Replay Attack
Reordering Attack
Miner's Advantage
Rollback Attack
DDoS Attack
Injection Attack
Transaction Ordering Attack
Race Condition
Access Control
Integer Overflow/Underflow
Timestamp Attack
Gas Consumption
Inappropriate Callback Function
Function Visibility
Implementation Vulnerability
Uninitialized Storage Pointer
Arithmetic Precision
Tx.origin
Fake Deposit
Shadow Variable
Design Vulnerability
Token Issuance

Panaroma Token

Presented by Fairyproof5

Fa
ir
yp
ro
of

af://n120

Admin Rights
Inappropriate Proxy Design
Inappropriate Use of Slots
Asset Security
Contract Upgrade/Migration
Code Improvement
Misc

05. Severity level reference

Every issue in this report was assigned a severity level from the following:

Critical severity issues need to be fixed as soon as possible.

High severity issues will probably bring problems and should be fixed.

Medium severity issues could potentially bring problems and should eventually be fixed.

Low severity issues are minor details and warnings that can remain unfixed but would be better
fixed at some point in the future.

Informational is not an issue or risk but a suggestion for code improvement.

06. Major areas that need attention

Based on the provided source code the Fairyproof team focused on the possible issues and risks
related to the following functions or areas.

- Function Implementation
We checked whether or not the functions were correctly implemented.

Panaroma Token

Presented by Fairyproof6

Fa
ir
yp
ro
of

af://n187
af://n203
af://n207

We found one issue, for more details please refer to FP-4 in "08. Issue description".

- Integer Overflow/Underflow
We checked all the code sections, which had arithmetic operations and might introduce integer
overflow or underflow if no safe libraries were used. All of them used safe libraries.

We didn't find issues or risks in these functions or areas at the time of writing.

- Access Control
We checked each of the functions that could modify a state, especially those functions that could
only be accessed by "owner".

We didn't find issues or risks in these functions or areas at the time of writing.

- Token Issuance & Exchange
We checked whether or not the contract files could mint tokens at will.

We found two issues, for more details please refer to FP-1 , FP-3 and FP-2 in "08. Issue description".

- State Update
We checked some key state variables which should only be set at initialization.

We didn't find issues or risks in these functions or areas at the time of writing.

- Asset Security
We checked whether or not all the functions that transfer assets were safely handled.

We didn't find issues or risks in these functions or areas at the time of writing.

- Miscellaneous
We found one issues, for more details please refer to FP-5 and FP-6 in "08. Issue description".

07. List of issues by severity

Panaroma Token

Presented by Fairyproof7

Fa
ir
yp
ro
of

af://n211
af://n215
af://n219
af://n223
af://n227
af://n231
af://n236

Index Title Issue/Risk Severity Status

FP-1
Wrong Constructor

Name
Design

Vulnerability
High ✓ Fixed

FP-2 Uncapped Supply
Design

Vulnerability
Medium Fixed

FP-3
Excessive Access

Control
Design

Vulnerability
Medium Acknowledged

FP-4
Incompatible with ERC-

20
Design

Vulnerability
Low Acknowledged

FP-5 Redundant Code
Code

Improvement
Info ✓ Fixed

FP-6
Code with Unknown

Logic
Code

Improvement
Info ✓ Fixed

08. Issue descriptions

[FP-1] Wrong Constructor Name High ✓ Fixed

Issue/Risk: Design Vulnerability

Description:

In earlier versions of Solidity , a contract and its constructor have the same name. In
PanaromaToken.sol , the function BoomToken should be renamed to PanaromaToken . Otherwise

BoomToken would be an external function that can be called permissionlessly.

The constructor name is incorrect and the corresponding parameters cannot be passed on
deployment.

Recommendation:

Consider renaming BoomToken to PanaromaToken .

Update/Status:

The Panaroma team has fixed this.

[FP-2] Uncapped Supply Medium Fixed

Issue/Risk: Design Vulnerability

Panaroma Token

Presented by Fairyproof8

Fa
ir
yp
ro
of

af://n285

Description:

In the PanaromaToken contract, the owner can arbitrarily mint tokens and burn tokens of any

account.

Recommendation:

Consider applying a cap on the supply.

Update:

The Panaroma team has added code to limit the minting and it won't exceed the max supply.

Status:

The Panaroma team has partially fixed this issue.

[FP-3] Excessive Access Control Medium Acknowledged

Issue/Risk: Design Vulnerability

Description:

In PanaromaToken.sol , token transfer can be paused, the admin can freeze or burn users' tokens.
Users should be aware of this and keep this in mind.

Recommendation:

Consider managing owner 's access control with great care and proceeding with this access control
cautiously.

Update/Status:

The Panaroma team has acknowledged this issue.

[FP-4] Incompatible with ERC-20 Low Acknowledged

Issue/Risk: Design Vulnerability

Description:

This PanaromaToken contract is incompatible with ERC-20. The transfer , transferFrom and

approve functions do not return boolean values.

To call these three functions in other contracts, it is recommended to use the low-level call
functions.

Recommendation:

Consider using the low-level call functions or not handling the return value.

Update/Status:

The Panaroma team has acknowledged this issue.

Panaroma Token

Presented by Fairyproof9

Fa
ir
yp
ro
of

[FP-5] Redundant Code Info ✓ Fixed

Issue/Risk: Code Improvement

Description:

In PanaromaToken.sol the function mint(uint256) was redundant because the existing

issue(uint) and mintTo(address,uint256) functions can work exactly the same.

Recommendation:

Consider removing the function.

Update/Status:

The Panaroma team has removed the issue function.

[FP-6] Code with Unknown Logic Info Fixed

Issue/Risk: Code Improvement

Description:

In PanaromaToken.sol , the mintTo , mint and burnFrom functions all had the following line of

code:

The logic of this conditional check is unknown.

Recommendation:

Consider implementing an understandable logic.

Update/Status:

The Panaroma team has removed the check.

09. Recommendations to enhance the
overall security

We list some recommendations in this section. They are not mandatory but will enhance the
overall security of the system if they are adopted.

Consider managing the admin's access control with great care and trasferring it to a multi-sig
wallet or DAO when necessary.

require(_totalSupply >= value);

Panaroma Token

Presented by Fairyproof10

Fa
ir
yp
ro
of

af://n349

10. Appendices

10.1 Unit Test File

const { expect } = require("chai");

const { ethers } = require("hardhat");

describe("PanaromaToken", function () {

 let instance;

 let owner,user1,user2,users;

 const init_supply = ethers.utils.parseUnits("2000000",6);

 const max_supply = ethers.BigNumber.from("50000000000000000");

 before(async () => {

 [owner,user1,user2,...users] = await ethers.getSigners();

 });

 beforeEach(async() => {

 const PanaromaToken = await ethers.getContractFactory("PanaromaToken");

 instance = await PanaromaToken.deploy(init_supply,"Panaroma","PAN",6);

 });

 describe("Meta test", function() {

 it("name | symbol | decimals test", async () => {

 expect(await instance.name()).to.be.equal("Panaroma");

 expect(await instance.symbol()).to.be.equal("PAN");

 expect(await instance.decimals()).to.be.equal(6);

 });

 });

 describe("Init status test", function() {

 it("init_supply test", async () => {

 expect(await instance.totalSupply()).to.be.equal(init_supply);

 expect(await

instance.balanceOf(owner.address)).to.be.equal(init_supply);

 });

 });

 describe("approve and allowance test", function() {

 it("approve should change allowance", async () => {

 expect(await

instance.allowance(user1.address,user2.address)).to.be.equal(0);

 await

expect(instance.connect(user1).approve(user2.address,10000)).to.be.emit(

 instance,"Approval"

).withArgs(user1.address,user2.address,10000);

 expect(await

instance.allowance(user1.address,user2.address)).to.be.equal(10000);

Panaroma Token

Presented by Fairyproof11

Fa
ir
yp
ro
of

af://n359
af://n361

 });

 });

 describe("transferFrom and transfer test", function() {

 it("transfer should change balance", async () => {

 await expect(instance.transfer(user1.address,1000)).to.be.emit(

 instance,"Transfer"

).withArgs(owner.address,user1.address,1000);

 expect(await

instance.balanceOf(owner.address)).to.be.equal(init_supply.sub(1000));

 expect(await instance.balanceOf(user1.address)).to.be.equal(1000);

 expect(await instance.totalSupply()).to.be.equal(init_supply);

 });

 it("transfer to self shouldn't change balance", async () => {

 await instance.transfer(owner.address,1000);

 expect(await

instance.balanceOf(owner.address)).to.be.equal(init_supply);

 expect(await instance.totalSupply()).to.be.equal(init_supply);

 });

 it("transfer should failed while sender has insufficient tokens", async ()

=> {

 await

expect(instance.connect(user1).transfer(user2.address,10)).to.be.reverted;

 });

 it("transferFrom without approval should be failed", async () => {

 await

expect(instance.connect(user1).transferFrom(owner.address,user2.address,10)).to.be

.reverted;

 });

 it("transferFrom should change balance and allowance", async () => {

 await instance.approve(user1.address, 10000);

 await

expect(instance.connect(user1).transferFrom(owner.address,user2.address,3000)).to.

be.emit(

 instance,"Transfer"

).withArgs(owner.address,user2.address,3000);

 expect(await

instance.balanceOf(owner.address)).to.be.equal(init_supply.sub(3000));

 expect(await instance.balanceOf(user1.address)).to.be.equal(0);

 expect(await instance.balanceOf(user2.address)).to.be.equal(3000);

 expect(await instance.totalSupply()).to.be.equal(init_supply);

 expect(await

instance.allowance(owner.address,user1.address)).to.be.equal(7000);

 });

 });

 describe("minter and burn", async () => {

 it("mint or burn without owner should be failed", async () => {

 await

expect(instance.connect(user1).mintTo(user1.address,100)).to.be.reverted;

Panaroma Token

Presented by Fairyproof12

Fa
ir
yp
ro
of

 await expect(instance.connect(user1).mint(100)).to.be.reverted;

 await

expect(instance.connect(user1).burnFrom(owner.address,100)).to.be.reverted;

 })

 it("mintTo should change state and emit event ", async () => {

 await expect(instance.mintTo(user1.address,10000)).to.be.emit(

 instance,"Transfer"

).withArgs(ethers.constants.AddressZero,user1.address,10000);

 expect(await

instance.balanceOf(owner.address)).to.be.equal(init_supply);

 expect(await instance.balanceOf(user1.address)).to.be.equal(10000);

 expect(await

instance.totalSupply()).to.be.equal(init_supply.add(10000));

 });

 it("mint should change state and emit event ", async () => {

 await expect(instance.mint(10000)).to.be.emit(

 instance,"Transfer"

).withArgs(ethers.constants.AddressZero,owner.address,10000);

 expect(await

instance.balanceOf(owner.address)).to.be.equal(init_supply.add(10000));

 expect(await

instance.totalSupply()).to.be.equal(init_supply.add(10000));

 });

 it("mint beyond max_supply should be failed", async () => {

 let value = max_supply.sub(init_supply).add(1)

 await expect(instance.mint(value)).to.be.reverted;

 });

 it("BurnFrom should change state and emit event", async () => {

 await instance.mintTo(user1.address,10000);

 await instance.connect(user1).approve(owner.address,10000);

 expect(await instance.balanceOf(user1.address)).to.be.equal(10000);

 expect(await

instance.allowance(user1.address,owner.address)).to.be.equal(10000);

 await expect(instance.burnFrom(user1.address,100)).to.be.emit(

 instance,"Transfer"

).withArgs(user1.address,ethers.constants.AddressZero,100);

 expect(await instance.balanceOf(user1.address)).to.be.equal(9900);

 expect(await

instance.allowance(user1.address,owner.address)).to.be.equal(9900);

 await expect(instance.burnFrom(user1.address,10000)).to.be.reverted;

 });

 });

 describe("isBlackListed and Pausable test", function() {

 it("transfer should be failed while paused", async () => {

 await instance.mint(10000);

 await expect(instance.pause()).to.be.emit(

 instance,"Pause"

);

Panaroma Token

Presented by Fairyproof13

Fa
ir
yp
ro
of

Output:

 await expect(instance.transfer(user1.address,100)).to.be.reverted;

 await instance.unpause();

 await instance.transfer(user1.address,100);

 });

 it("transfer should be failed while in blacklist", async () => {

 await instance.mintTo(user1.address,100);

 await instance.addBlackList(user1.address);

 await

expect(instance.connect(user1).transfer(user2.address,20)).to.be.reverted;

 await instance.removeBlackList(user1.address);

 await instance.connect(user1).transfer(user2.address,20);

 expect(await instance.balanceOf(user1.address)).to.be.equal(80);

 expect(await instance.balanceOf(user2.address)).to.be.equal(20);

 });

 it("destroyBlackFunds should change state", async () => {

 await instance.transfer(user1.address,100);

 expect(await instance.totalSupply()).to.be.equal(init_supply);

 expect(await instance.balanceOf(user1.address)).to.be.equal(100);

 await instance.addBlackList(user1.address);

 await instance.destroyBlackFunds(user1.address);

 expect(await

instance.totalSupply()).to.be.equal(init_supply.sub(100));

 expect(await instance.balanceOf(user1.address)).to.be.equal(0);

 });

 });

});

 PanaromaToken

 Meta test

 ✔ name | symbol | decimals test
 Init status test

 ✔ init_supply test
 approve and allowance test

 ✔ approve should change allowance
 transferFrom and transfer test

 ✔ transfer should change balance
 ✔ transfer to self shouldn't change balance
 ✔ transfer should failed while sender has insufficient tokens
 ✔ transferFrom without approval should be failed
 ✔ transferFrom should change balance and allowance (51ms)
 minter and burn

 ✔ mint or burn without owner should be failed
 ✔ mintTo should change state and emit event
 ✔ mint should change state and emit event (42ms)
 ✔ mint beyond max_supply should be failed
 ✔ BurnFrom should change state and emit event (82ms)

Panaroma Token

Presented by Fairyproof14

Fa
ir
yp
ro
of

Index Function Visibility
Re-entrancy
Check

Permission
Check

Unit
Test

Notes

1 unpause() public onlyOwner Passed whenPaused

2 transfer(address,uint) public Passed whenNotPaused

3 transferFrom(address,address,uint) public Passed whenNotPaused

4 balanceOf(address) public Passed View

5 approve(address,uint) public Passed

6 allowance(address,address) public Passed View

7 deprecate(address) public onlyOwner Passed

8 totalSupply() public Passed View

9 setParams(uint,uint) public onlyOwner

10 addFounders(address) public onlyOwner redundant

11 addInvestors(address) public onlyOwner redundant

12 addTeamMember(address) public onlyOwner redundant

13 addAdvisors(address) public onlyOwner redundant

14 getFounders() public View

15 getInvestors() public View

16 getTeam() public View

17 getAdvisors() public View

18 mintTo(address,uint256) public onlyOwner Passed

19 mint(uint256) public onlyOwner Passed

20 burnFrom(address,uint256) public onlyOwner Passed

21 transferOwnership(address) public onlyOwner

22 pause() public onlyOwner Passed whenNotPaused

10.2 External Functional Checkpoints
(Empty elements in the table represent things that are not required or relevant)

File:PanaromaToken.sol

contract: PanaromaToken is Pausable, StandardToken, BlackList

 isBlackListed and Pausable test

 ✔ transfer should be failed while paused (50ms)
 ✔ transfer should be failed while in blacklist (66ms)
 ✔ destroyBlackFunds should change state (54ms)

 16 passing (2s)

Panaroma Token

Presented by Fairyproof15

Fa
ir
yp
ro
of

af://n367
af://n369

	01. Introduction
	— Disclaimer
	— Methodology
	— Structure of the document
	— Documentation
	— Comments from Auditor

	02. About Fairyproof
	03. Major functions of audited code
	04. Coverage of issues
	05. Severity level reference
	06. Major areas that need attention
	- Function Implementation
	- Integer Overflow/Underflow
	- Access Control
	- Token Issuance & Exchange
	- State Update
	- Asset Security
	- Miscellaneous

	07. List of issues by severity
	08. Issue descriptions
	09. Recommendations to enhance the overall security
	10. Appendices
	10.1 Unit Test File
	10.2 External Functional Checkpoints
	File:PanaromaToken.sol

