
Openmeta

Version 1.0.0

Serial No. 2022030800022021

Presented by Fairyproof

March 8, 2022

01. Introduction

This document includes the results of the audit performed by the Fairyproof team on the
Openmeta project.

Audit Start Time:

March 4, 2022

Audit End Time:

March 7, 2022

Audited Code's Github Repository:

https://github.com/openmeta-finance/contracts

Audited Code's Github Commit Number When Audit Started:

d8749545140dc1559222ae55bb80190e18ab17d1

Audited Code's Github Commit Number When Audit Ended:

498da778c2562623f18175b574de785267d127fe

Audited Source Files:

The source files audited include all the files with the extension "sol" as follows:

The goal of this audit is to review Openmeta’s solidity implementation for its NFT auction
application, study potential security vulnerabilities, its general design and architecture, and
uncover bugs that could compromise the software in production.

contracts/

├── OpenmetaController.sol

├── OpenmetaNFT.sol

├── OpenmetaTrade.sol

├── interface

│ ├── IERCToken.sol

│ ├── IMnftController.sol

│ ├── IOpenmetaController.sol

│ └── IOpenmetaTrade.sol

├── libraries

│ └── TransferHelper.sol

└── utils

 ├── BlockTimestamp.sol

 └── Validation.sol

3 directories, 10 files

Openmeta

Presented by Fairyproof1

af://n0
https://github.com/openmeta-finance/contracts

We make observations on specific areas of the code that present concrete problems, as well as
general observations that traverse the entire codebase horizontally, which could improve its
quality as a whole.

This audit only applies to the specified code, software or any materials supplied by the Openmeta
team for specified versions. Whenever the code, software, materials, settings, environment etc is
changed, the comments of this audit will no longer apply.

— Disclaimer
Note that as of the date of publishing, the contents of this report reflect the current
understanding of known security patterns and state of the art regarding system security. You
agree that your access and/or use, including but not limited to any associated services, products,
protocols, platforms, content, and materials, will be at your sole risk.

The review does not extend to the compiler layer, or any other areas beyond the programming
language, or other programming aspects that could present security risks. If the audited source
files are smart contract files, risks or issues introduced by using data feeds from offchain sources
are not extended by this review either.

Given the size of the project, the findings detailed here are not to be considered exhaustive, and
further testing and audit is recommended after the issues covered are fixed.

To the fullest extent permitted by law, we disclaim all warranties, expressed or implied, in
connection with this report, its content, and the related services and products and your use
thereof, including, without limitation, the implied warranties of merchantability, fitness for a
particular purpose, and non-infringement.

We do not warrant, endorse, guarantee, or assume responsibility for any product or service
advertised or offered by a third party through the product, any open source or third-party
software, code, libraries, materials, or information linked to, called by, referenced by or accessible
through the report, its content, and the related services and products, any hyperlinked websites,
any websites or mobile applications appearing on any advertising, and we will not be a party to or
in any way be responsible for monitoring any transaction between you and any third-party
providers of products or services.

FOR AVOIDANCE OF DOUBT, THE REPORT, ITS CONTENT, ACCESS, AND/OR USAGE THEREOF,
INCLUDING ANY ASSOCIATED SERVICES OR MATERIALS, SHALL NOT BE CONSIDERED OR RELIED
UPON AS ANY FORM OF FINANCIAL, INVESTMENT, TAX, LEGAL, REGULATORY, OR OTHER ADVICE.

— Methodology
The above files' code was studied in detail in order to acquire a clear impression of how the its
specifications were implemented. The codebase was then subject to deep analysis and scrutiny,
resulting in a series of observations. The problems and their potential solutions are discussed in
this document and, whenever possible, we identify common sources for such problems and
comment on them as well.

The Fairyproof auditing process follows a routine series of steps:

1. Code review that includes the following
i. Review of the specifications, sources, and instructions provided to Fairyproof to make sure

Openmeta

Presented by Fairyproof2

af://n24
af://n32

Serial Number Auditor Audit Time Result

2022030800022021
Fairyproof Security
Team

Mar 4, 2022 - Mar 7,
2022

Informational

we understand the size, scope, and functionality of the project's source code.
ii. Manual review of code, which is the process of reading source code line-by-line in an
attempt to identify potential vulnerabilities.
iii. Comparison to specification, which is the process of checking whether the code does what
the specifications, sources, and instructions provided to Fairyproof describe.

2. Testing and automated analysis that includes the following:
i. Test coverage analysis, which is the process of determining whether the test cases are
actually covering the code and how much code is exercised when we run the test cases.
ii. Symbolic execution, which is analyzing a program to determine what inputs cause each
part of a program to execute.

3. Best practices review, which is a review of the source code to improve maintainability,
security, and control based on the established industry and academic practices,
recommendations, and research.

— Structure of the document
This report contains a list of issues and comments on all the above source files. Each issue is
assigned a severity level based on the potential impact of the issue and recommendations to fix it,
if applicable. For ease of navigation, an index by topic and another by severity are both provided
at the beginning of the report.

— Documentation
For this audit, we used the following sources of truth about how the NFT auction application
should work:

https://nft.openmeta.finance/

This was considered the specification, and when discrepancies arose with the actual code
behavior, we consulted with the Openmeta team or reported an issue.

— Comments from Auditor

Openmeta

Presented by Fairyproof3

af://n43
af://n46
https://nft.openmeta.finance/
af://n52

Summary:

The Fairyproof security team used its auto analysis tools and manual work to audit the project.
During the audit, 1 risk of high-severity, 1 risk of medium-severity, 2 risks of low-severity and 2
risks of informational-severity were found. The risk of high-severity, the risk of medium-severity, 2
risks of low-severity and 1 risk of informational-severity have been fixed and 1 risk of
informational-severity has been confirmed.

02. About Fairyproof

Fairyproof is a leading technology firm in the blockchain industry, providing consulting and
security audits for organizations. Fairyproof has developed industry security standards for
designing and deploying blockchain applications.

03. Introduction to Openmeta

Openmeta is an NFT auction application.

04. Major functions of audited code

Openmeta

Presented by Fairyproof4

af://n74
https://www.fairyproof.com/
af://n80
af://n86

The audited code mainly implements an NFT auction application which has the following
functions:

The OpenmetaNFT.sol contract implements an ERC-1155 NFT contract.

The OpenmetaController.sol contract implements a controller which controls NFT mint, access
control and etc.

The OpenmetaTrade.sol contract implements an auction application which supports both ERC-
721 tokens and ERC-1155 tokens. A seller can sell his/her NFTs and select a type of token from a
list of supported tokens as his/her preferred payment method. A buyer can buy NFTs by paying
the seller's preferred token.

Note: the application has off-chain functions which were not covered by this audit.

05. Coverage of issues

The issues that the Fairyproof team covered when conducting the audit include but are not
limited to the following ones:

Re-entrancy Attack
Replay Attack
Reordering Attack
Miner's Advantage
Rollback Attack
DDos Attack
Transaction Ordering Attack
Race Condition
Access Control
Integer Overflow/Underflow
Timestamp Attack
Gas Consumption
Inappropriate Callback Function
Function Visibility
Implementation Vulnerability
Uninitialized Storage Pointer
Arithmetic Precision
Tx.origin
Fake Deposit
Shadow Variable
Incorrect Parameter Setting
Design Vulnerability
Token Issurance
Admin Rights
Inappropriate Proxy Design
Inappropriate Use of Slots
Asset Security
Contract Upgrade/Migration

Openmeta

Presented by Fairyproof5

af://n96

Code Improvement
Misc

06. Severity level reference

Every issue in this report was assigned a severity level from the following:

Critical severity issues need to be fixed as soon as possible.

High severity issues will probably bring problems and should be fixed.

Medium severity issues could potentially bring problems and should eventually be fixed.

Minor severity issues are minor details and warnings that can remain unfixed but would be
better fixed at some point in the future.

Informational is not an issue or risk but a suggestion for code improvement.

07. List of issues by severity

Openmeta

Presented by Fairyproof6

af://n163
af://n179

Index Title Issue/Risk Severity Status

FP-1
Incorrect Payment

Function
Design Vulnerability High ✓Fixed

FP-2
Incorrect Auction

Function
Design Vulnerability Medium ✓Fixed

FP-3
Missing Constrains

for Variable
Incorrect

Parameter Setting
Low ✓Fixed

FP-4
Missing Validation

for Payment
Design Vulnerability Low ✓Fixed

FP-5 Redundant Code Code Improvement Informational ✓Fixed

FP-6
Unused Imported

Interfaces
Code Improvement Informational Confirmed

08. Issue descriptions

[FP-1] Incorrect Payment Function High ✓Fixed

Issue/Risk: Design Vulnerability

Description:

In the OpenmetaTrade.sol file, the performOrder function allowed a buyer to pay ETHs.
However when an auction was going on, only the one that signed the OpenmetaController
contract was able to call the performOrder function(more details can be checked in modifier
checkOrderCaller). In this situation when a buyer won an item and paid for it, it was the signer
i.e. msg.sender that paid for it. That is to say the buyer didn't need to pay for the won item and
as long as the msg.sender had sufficient asset, the assets held by msg.sender were used to pay
for it.

Recommendation:

Consider using WETH instead of ETH to pay for a won item in an auction.

Status:

It has been fixed by the Openmeta team. A conditional check has been added:
require(!isOriginToken, "auctions do not support chain-based coins"); . This enforces a
buyer to pay ERC-20 tokens.

[FP-2] Incorrect Auction Function Medium ✓Fixed

Openmeta

Presented by Fairyproof7

af://n228

Issue/Risk: Design Vulnerability

Description:

In the OpenmetaTrade.sol file, the performOrder function called the getOrderUserBalance
function to verify the winner's balance and the seller's NFTs in an auction. When the seller didn't
have sufficient ERC-1155 NFTs, an auction wouldn't be started. However the implementation
allowed a seller to sell an NFT which wasn't minted yet. The correct implementation should only
allow a seller to auction an already minted NFT.

Recommendation:

Consider adding a directive to check whether or not all the NFTs for an auction are already minted
before checking whether or not the seller has sufficient NFTs.

Status:

It has been fixed by the Openmeta team. A conditional check has been added: if
((_dealOrder.minted && nftBalance < _makerOrder.quantity) || amountBalance <

_dealOrder.dealAmount)

[FP-3] Missing Constrains for Variable Low ✓Fixed

Issue/Risk: Incorrect Parameter Setting

Description:

In the OpenmetaController.sol file, the setMaxFeeLimit function didn't have constraints for
the setting of _maxFeeLimit . If _maxFeeLimit were inappropriately set, buyers wouldn't be
able to participate in an auction.

Recommendation:

Consider adding constraints for the setting of _maxFeeLimit .

Status:

It has been fixed by the Openmeta team. The following condition has been added:

[FP-4] Missing Validation for Payment Low ✓Fixed

Issue/Risk: Design Vulnerability

Description:

In the OpenmetaTrade.sol file, the performOrder function didn't check whether or not the
winner's payment was equal to or greater than the winning bid's price. This validation was done
off-chain.

Recommendation:

require(

 _maxFeeLimit >= feeRate && _maxFeeLimit < BASE_ROUND,

 "verification fee limit failed"

);

Openmeta

Presented by Fairyproof8

Consider adding validation for this in smart contract implementation as well.

Status:

It has been fixed by the Openmeta team and the following condition has been added:

[FP-5] Redundant Code Informational ✓Fixed

Issue/Risk: Code Improvement

Description:

In the OpenmetaController.sol file, both the getMaximumFee function and the checkFeeAmount
function had the following redundant code:

In the above code section, the * BASE_ROUND operation and the /BASE_ROUND operation didn't
improve a precision.

Recommendation:

Consider simplifying the code.

Status:

It has been fixed by the Openmeta team and here is the updated code:

[FP-6] Unused Imported Interfaces Informational Confirmed

Issue/Risk: Code Improvement

Description:

Under the interface directory, the IMnftController.sol file defined multiple interfaces.
However these interfaces were not used and the interfaces were not implemented either.

Recommendation:

Consider reorganizing interfaces' definitions and importing them in the files that use them and
implementing them in the files that inherit them. If there are interfaces which are not used by
other, define them internally in smart contracts.

Status:

uint256 dealAmount = _makerOrder.price * _makerOrder.quantity;

require(_dealOrder.dealAmount >= dealAmount, "order deal amount verification

failed");

maximumFee = _amount * (maxFeeLimit * BASE_ROUND) / 10000 / BASE_ROUND;

authorFee = _amount * (_authorProtocolFee * BASE_ROUND) / 10000 / BASE_ROUND;

txFee = _amount * (feeRate * BASE_ROUND) / 10000 / BASE_ROUND;

uint256 public constant BASE_ROUND = 10000;

maximumFee = _amount * maxFeeLimit / BASE_ROUND;

Openmeta

Presented by Fairyproof9

It has been confirmed by the Openmeta team. The team will improve code in its future upgrades.

09. Recommendations to enhance the
overall security

We list some recommendations in this section. They are not mandatory but will enhance the
overall security of the system if they are adopted.

- N/A

Appendix

Audited Files' SHA-256 Values:

contracts/OpenmetaController.sol:

0x4f53964474b08c964a28953550d5d3fef7485f6649b0f21ce311f4105af75bd7

contracts/OpenmetaNFT.sol:

0x9658ebddf0b2f1ed6036c2a4c19e115524df6d125b0160907dd6b9603e128e91

contracts/OpenmetaTrade.sol:

0x733a3bb69ef289328f2e8af5835fda278cb50763288fd11d1f250e4ce8e72579

contracts/interface/IERCToken.sol:

0xc7b798f9b0a0660cf79fd6f33a6f4172b79142ad8d2269744cae52ab70c3516e

contracts/interface/IMnftController.sol:

0xeda179b24e31a22e6d7d6948ac0b24d20f10472a94d2e7b85d71758cd23df59b

contracts/interface/IOpenmetaController.sol:

0xe03f90b69532e7b48f0f30652c09855dcd64fb8b2205240d2a383df8e9972e40

contracts/interface/IOpenmetaTrade.sol:

0xf41f9f58d97478dd3d7545ec972b4f5b64cfc7f5633584efee928da8927fff13

contracts/libraries/TransferHelper.sol:

0x10e90a45583a37c724469636c3f72891b05df8758bcced41e7428e0a16d739c8

Openmeta

Presented by Fairyproof10

af://n291
af://n295
af://n299

Unit Test Result:

contracts/utils/BlockTimestamp.sol:

0x49ed703773e14bdff4b91e2e3c6725b113a9f98a274a85fc4b662a4e8387279b

contracts/utils/Validation.sol:

0x21adc5caeba350fa5504f8cdfe192043eea2d8e814762dd5dc1e0ecb924c71f7

44 passing (6s)

--------------------------|----------|----------|----------|----------|----------

------|

File | % Stmts | % Branch | % Funcs | % Lines |Uncovered

Lines |

--------------------------|----------|----------|----------|----------|----------

------|

 contracts/ | 92.86 | 66.67 | 100 | 92.99 |

 |

 Mock20.sol | 100 | 100 | 100 | 100 |

 |

 OpenmetaController.sol | 100 | 85.71 | 100 | 100 |

 |

 OpenmetaNFT.sol | 100 | 100 | 100 | 100 |

 |

 OpenmetaTrade.sol | 86.25 | 58.82 | 100 | 86.42 |...

303,304,325 |

 contracts/interface/ | 100 | 100 | 100 | 100 |

 |

 IERCToken.sol | 100 | 100 | 100 | 100 |

 |

 IMnftController.sol | 100 | 100 | 100 | 100 |

 |

 IOpenmetaController.sol | 100 | 100 | 100 | 100 |

 |

 IOpenmetaTrade.sol | 100 | 100 | 100 | 100 |

 |

 contracts/libraries/ | 50 | 25 | 50 | 50 |

 |

 TransferHelper.sol | 50 | 25 | 50 | 50 |

 11,12,37,38 |

 contracts/utils/ | 100 | 100 | 100 | 100 |

 |

 BlockTimestamp.sol | 100 | 100 | 100 | 100 |

 |

 Validation.sol | 100 | 100 | 100 | 100 |

 |

--------------------------|----------|----------|----------|----------|----------

------|

All files | 90.85 | 64.15 | 95.56 | 91.07 |

 |

--------------------------|----------|----------|----------|----------|----------

------|

Openmeta

Presented by Fairyproof11

Openmeta

Presented by Fairyproof12

	01. Introduction
	— Disclaimer
	— Methodology
	— Structure of the document
	— Documentation
	— Comments from Auditor

	02. About Fairyproof
	03. Introduction to Openmeta
	04. Major functions of audited code
	05. Coverage of issues
	06. Severity level reference
	07. List of issues by severity
	08. Issue descriptions
	09. Recommendations to enhance the overall security
	- N/A

	Appendix

