
Meta Finance

Version 1.0.0

Serial No. 2022060100042019

Presented by Fairyproof

June 1, 2022

01. Introduction

This document includes the results of the audit performed by the Fairyproof team on the Meta
Finance project.

Audit Start Time:

May 25, 2022

Audit End Time:

June 1, 2022

Audited Code's Github Repository:

https://github.com/MetaFinanceContract/trigger/tree/main/contracts

Audited Code's Github Commit Number When Audit Started:

cf4511a4a903fa85ea41e3d518548104d32f2e35

Audited Code's Github Commit Number When Audit Ended:

99c68564e525cfa70b981af405bdb5e7dbeebab8

Audited Source Files:

The source files audited include all the files with the extension "sol" as follows:

The goal of this audit is to review Meta Finance’s solidity implementation for its smart router
function, study potential security vulnerabilities, its general design and architecture, and uncover
bugs that could compromise the software in production.

contracts/

├── MetaFinanceClubInfo.sol

├── MetaFinanceIssuePool.sol

├── MetaFinanceTriggerPool.sol

├── events

│ ├── MfiIssueEvents.sol

│ └── MfiTriggerEvents.sol

├── interfaces

│ ├── MfiIssueInterfaces.sol

│ └── MfiTriggerInterfaces.sol

├── storages

│ ├── MfiClubStorages.sol

│ ├── MfiIssueStorages.sol

│ └── MfiTriggerStorages.sol

└── utils

 ├── MfiAccessControl.sol

 └── MfiContractPorxy.sol

4 directories, 12 files

Meta Finance

Presented by Fairyproof1

Fa
ir
yp
ro
of

af://n0
https://github.com/MetaFinanceContract/trigger/tree/main/contracts

We make observations on specific areas of the code that present concrete problems, as well as
general observations that traverse the entire codebase horizontally, which could improve its
quality as a whole.

This audit only applies to the specified code, software or any materials supplied by the Meta
Finance team for specified versions. Whenever the code, software, materials, settings,
environment etc is changed, the comments of this audit will no longer apply.

— Disclaimer
Note that as of the date of publishing, the contents of this report reflect the current
understanding of known security patterns and state of the art regarding system security. You
agree that your access and/or use, including but not limited to any associated services, products,
protocols, platforms, content, and materials, will be at your sole risk.

The review does not extend to the compiler layer, or any other areas beyond the programming
language, or other programming aspects that could present security risks. If the audited source
files are smart contract files, risks or issues introduced by using data feeds from offchain sources
are not extended by this review either.

Given the size of the project, the findings detailed here are not to be considered exhaustive, and
further testing and audit is recommended after the issues covered are fixed.

To the fullest extent permitted by law, we disclaim all warranties, expressed or implied, in
connection with this report, its content, and the related services and products and your use
thereof, including, without limitation, the implied warranties of merchantability, fitness for a
particular purpose, and non-infringement.

We do not warrant, endorse, guarantee, or assume responsibility for any product or service
advertised or offered by a third party through the product, any open source or third-party
software, code, libraries, materials, or information linked to, called by, referenced by or accessible
through the report, its content, and the related services and products, any hyperlinked websites,
any websites or mobile applications appearing on any advertising, and we will not be a party to or
in any way be responsible for monitoring any transaction between you and any third-party
providers of products or services.

FOR AVOIDANCE OF DOUBT, THE REPORT, ITS CONTENT, ACCESS, AND/OR USAGE THEREOF,
INCLUDING ANY ASSOCIATED SERVICES OR MATERIALS, SHALL NOT BE CONSIDERED OR RELIED
UPON AS ANY FORM OF FINANCIAL, INVESTMENT, TAX, LEGAL, REGULATORY, OR OTHER ADVICE.

— Methodology
The above files' code was studied in detail in order to acquire a clear impression of how the its
specifications were implemented. The codebase was then subject to deep analysis and scrutiny,
resulting in a series of observations. The problems and their potential solutions are discussed in
this document and, whenever possible, we identify common sources for such problems and
comment on them as well.

The Fairyproof auditing process follows a routine series of steps:

1. Code review that includes the following

i. Review of the specifications, sources, and instructions provided to Fairyproof to make sure

Meta Finance

Presented by Fairyproof2

Fa
ir
yp
ro
of

af://n24
af://n32

Serial Number Auditor Audit Time Result

2022060100042019 Fairyproof Security Team 2022.05.25 - 2022.06.01 Medium

we understand the size, scope, and functionality of the project's source code.

ii. Manual review of code, which is the process of reading source code line-by-line in an
attempt to identify potential vulnerabilities.

iii. Comparison to specification, which is the process of checking whether the code does what
the specifications, sources, and instructions provided to Fairyproof describe.

2. Testing and automated analysis that includes the following:

i. Test coverage analysis, which is the process of determining whether the test cases are
actually covering the code and how much code is exercised when we run the test cases.

ii. Symbolic execution, which is analyzing a program to determine what inputs cause each
part of a program to execute.

3. Best practices review, which is a review of the source code to improve maintainability,
security, and control based on the established industry and academic practices,
recommendations, and research.

— Structure of the document
This report contains a list of issues and comments on all the above source files. Each issue is
assigned a severity level based on the potential impact of the issue and recommendations to fix it,
if applicable. For ease of navigation, an index by topic and another by severity are both provided
at the beginning of the report.

— Documentation
For this audit, we used the following sources of truth about how the smart router function should
work:

Smart Contract Files

These were considered the specification, and when discrepancies arose with the actual code
behavior, we consulted with the Meta Finance team or reported an issue.

— Comments from Auditor

Meta Finance

Presented by Fairyproof3

Fa
ir
yp
ro
of

af://n43
af://n46
af://n52

Summary:

The Fairyproof security team used its auto analysis tools and manual work to audit the project.
During the audit, 2 risks of high-severity, 5 risks of medium-severity and 1 risk of low-severity
were uncovered. 2 risks of high-severity, 3 risks of medium-severity and 1 risk of low-severity have
been fixed, 1 risk of medium-severity has been partially fixed. 1 risk of medium-severity has been
acknowledged.

02. About Fairyproof

Fairyproof is a leading technology firm in the blockchain industry, providing consulting and
security audits for organizations. Fairyproof has developed industry security standards for
designing and deploying blockchain applications.

03. Major functions of audited code

The audited code mainly implements a smart router on the BNB chain. Users' staked Cake tokens
will be invested in third-party applications to earn profits in both Cake and another token.

Note: like all the existing smart router applications, since users' assets will be invested in third-
party applications, it is possible users' assets will be lost due to security issues that may happen to
these third-party applications.

Meta Finance

Presented by Fairyproof4

Fa
ir
yp
ro
of

af://n73
https://www.fairyproof.com/
af://n79
af://n87

04. Coverage of issues

The issues that the Fairyproof team covered when conducting the audit include but are not
limited to the following ones:

Re-entrancy Attack
Replay Attack
Reordering Attack
Miner's Advantage
Rollback Attack
DDoS Attack
Transaction Ordering Attack
Race Condition
Access Control
Integer Overflow/Underflow
Timestamp Attack
Gas Consumption
Inappropriate Callback Function
Function Visibility
Implementation Vulnerability
Uninitialized Storage Pointer
Arithmetic Precision
Tx.origin
Fake Deposit
Shadow Variable
Parameter Check
Design Vulnerability
Token Issuance
Admin Rights
Inappropriate Proxy Design
Inappropriate Use of Slots
Asset Security
Contract Upgrade/Migration
Code Improvement
Misc

05. Severity level reference

Every issue in this report was assigned a severity level from the following:

Critical severity issues need to be fixed as soon as possible.

Meta Finance

Presented by Fairyproof5

Fa
ir
yp
ro
of

af://n87
af://n154

High severity issues will probably bring problems and should be fixed.

Medium severity issues could potentially bring problems and should eventually be fixed.

Low severity issues are minor details and warnings that can remain unfixed but would be better
fixed at some point in the future.

Informational is not an issue or risk but a suggestion for code improvement.

06. Major areas that need attention

Based on the provided source code the Fairyproof team focused on the possible issues and risks
related to the following functions or areas.

- Implementation of Functions
We checked whether or not all the functions were properly implemented.

We found two issues, for more details, please refer to FP-1 and FP-3 in “08. Issue description”

- Integer Overflow/Underflow
We checked all the code sections, which had arithmetic operations and might introduce integer
overflow or underflow if no safe libraries were used. All of them used safe libraries.

We didn't find issues or risks in these functions or areas at the time of writing.

- Access Control
We checked each of the functions that could modify a state, especially those functions that could
only be accessed by "owner".

We didn't find issues or risks in these functions or areas at the time of writing.

- Token Issuance and Transactions
We checked whether or not the contract files that minted tokens or transferred tokens worked
normally.

We didn't find issues or risks in these functions or areas at the time of writing.

Meta Finance

Presented by Fairyproof6

Fa
ir
yp
ro
of

af://n170
af://n174
af://n178
af://n182
af://n186

- State Update
We checked some key state variables which should only be set at initialization.

We found one issue, for more details, please refer to FP-7 in “08. Issue description”

- Asset Security
We checked whether or not all the functions that transfer assets were safely handled.

We found two issues, for more details, please refer to FP-2 and FP-6 in “08. Issue description”

- Contract Migration/Upgrade
We checked whether or not the contract files introduced issues or risks associated with contract
migration/upgrade.

We found one issue, for more details, please refer to FP-4 in “08. Issue description”.

- Miscellaneous
We found two issues or risks in other functions or areas at the time of writing, for more details,
please refer to FP-5 and FP-8 in “08. Issue description”

07. List of issues by severity

Meta Finance

Presented by Fairyproof7

Fa
ir
yp
ro
of

af://n190
af://n194
af://n198
af://n202
af://n207

Index Title Issue/Risk Severity Status

FP-1
Incorrect Algorithm

of Reward Calculation
Design

Vulnerability
High ✓ Fixed

FP-2
User Assets Could Be

Withdrawn
Admin Rights High ✓ Fixed

FP-3
Malfunctioning of

Contracts
Design

Vulnerability
Medium Partially Fixed

FP-4
Contract

Upgradeable
Contract

Upgrade/Migration
Medium Acknowledged

FP-5
Redundant receive

Function
Implementation

Vulnerability
Medium ✓ Fixed

FP-6
Missing Interface for

Emergent Withdrawal
Implementation

Vulnerability
Medium ✓ Fixed

FP-7
Mutable Address

Variables
Admin Rights Medium ✓ Fixed

FP-8
Missing Parameter

Check
Parameter Check Low ✓ Fixed

08. Issue descriptions

[FP-1] Incorrect Algorithm of Reward Calculation

High ✓ Fixed

Issue/Risk: Design Vulnerability

Description:

In MetaFinanceIssuePool.sol , the earned function used a formula new reward = (new reward
+ existing reward) * coefficient . When this was called multiple times, the existing reward
would be timed by the coefficient multiple times thus causing the actual reward to be less than
expected.

The code section was as follows:

Meta Finance

Presented by Fairyproof8

Fa
ir
yp
ro
of

af://n268

Recommendation:

Consider changing the formula to: new reward = new reward * coefficient + existing
reward .

Update/Status:

It has been fixed by the Meta Finance team.

[FP-2] User Assets Could Be Withdrawn High ✓

Fixed

Issue/Risk: Admin Rights

Description:

In MetaFinanceTriggerPool.sol , the claimTokens function could only be called by the admin.
This function could be used to withdraw surplus ERC-20 tokens. However this function didn't have
restrictions on the type of the ERC-20 token that could be withdrawn, therefore users' staked
tokens might be withdrawn as well. In emergent cases when users staked assets were transferred
to this contract by calling uploadMiningPool the admin could take away these assets.

Recommendation:

Consider adding a constraint such that users' staked tokens couldn't be withdrawn.

Update:

The Meta Finance team added the following code:

Status:

It has been fixed by the Meta Finance team.

[FP-3] Malfunctioning of Contracts Medium Partially

Fixed

function earned(address account_) public view returns (uint256) {

 uint256 userEarned =

(_balances[account_].mul(rewardPerToken().sub(userRewardPerTokenPaid[account_]))

.div(1e18).add(rewards[account_]));

 if (metaFinanceClubInfo.userClub(account_) ==

metaFinanceClubInfo.treasuryAddress())

 return

userEarned.mul(metaFinanceClubInfo.noClub()).div(metaFinanceClubInfo.proportion(

));

 return

userEarned.mul(metaFinanceClubInfo.yesClub()).div(metaFinanceClubInfo.proportion

());

}

if (token != address(cakeTokenAddress))

 IERC20Metadata(token).safeTransfer(to, amount);

Meta Finance

Presented by Fairyproof9

Fa
ir
yp
ro
of

Issue/Risk: Design Vulnerability

Description:

In MetaFinanceTriggerPool.sol , there was a precondition for external access: all the staked
assets had been invested in third-party applications. When no third-party application address was
set or the address was set to 0 (the length of smartChefArray was 0), the assets wouldn't be
invested. In this case the contract didn't allow operations such as staking, withdrawal or setting
smartChefArray .

Recommendation:

Consider changing the design by adding an implementation to handle this case.

Update:

The Meta Finance team added some conditional checks such that when the length
of smartChefArray is 0, the assets will not be invested. In addition, the team will prevent this
issue from happening by acting with more care such as avoiding setting smartChefArray to a
NULL array.

Status:

It has been partially fixed and the team plans to fix it in future upgrades.

[FP-4] Contract Upgradeable Medium Acknowledged

Issue/Risk: Contract Upgrade/Migration

Description:

In order for the implementation to be more scalable and adaptable, the contracts were designed
as upgradeable. However this might introduce issues or risks if a contract upgrade is not handled
properly.

Recommendation:

Consider handling contract upgrade with great care and conducting a contract audit prior to a
contract upgrade.

Update:

The purpose of designing contracts as upgradeable was to handle emergent cases, optimize code
and make the contracts adaptable to changing situations. The Meta Finance team will handle
contract upgrade with great care and conduct a contract audit prior to a contract upgrade.

Status:

It has been acknowledged by the Meta Finance team.

[FP-5] Redundant receive Function Medium ✓ Fixed

Issue/Risk: Implementation Vulnerability

Description:

Meta Finance

Presented by Fairyproof10

Fa
ir
yp
ro
of

In MetaFinanceTriggerPool.sol , receive() external payable {} could accept ETHs sent by
users. However this function is redundant. If a user mistakenly sent ETHs to it, the ETHs would
never be taken back.

Recommendation:

Consider removing this function.

Update/Status:

It has been fixed by the Meta Finance team.

[FP-6] Missing Interface for Emergent Withdrawal

Medium ✓ Fixed

Issue/Risk: Implementation Vulnerability

Description:

In MetaFinanceTriggerPool , the projectPartyEmergencyWithdraw function was designed to
withdraw assets in emergent cases, however it didn't have a variable to record the withdrawal
status. Therefore users could still stake or withdraw in emergent cases, and might not be able to
withdraw staked assets in emergent cases.

Recommendation:

Consider adding an interface for withdrawing tokens in emergent cases. When emergent cases
happen, users can only withdraw staked assets, not rewards.

Update:

The Meta Finance team added a variable to record the withdrawal status and an interface for
withdrawing tokens in emergent cases.

Status:

It has been fixed by the Meta Finance team.

[FP-7] Mutable Address Variables Medium ✓ Fixed

Issue/Risk: Admin Rights

Description:

In MetaFinanceTriggerPool , the values of MetaFinanceIssuePool and MetaFinanceClubInfo
could be updated by the setExternalContract function. However after the values were
updated, calculation of users' rewards would be prone to errors.

Recommendation:

Consider removing the function.

Update:

The function has been removed.

Status:

Meta Finance

Presented by Fairyproof11

Fa
ir
yp
ro
of

It has been fixed by the Meta Finance team.

[FP-8] Missing Parameter Check Low ✓ Fixed

Issue/Risk: Parameter Check

Description:

Some functions didn't have parameter checks such that when some parameters were improperly
set, these functions wouldn't work normally. Here were the cases:

In MetaFinanceClubInfo.sol , the boundClub function didn't check whether or not
clubAddress_ was a zero-address. When it was, the function could be called repeatedly thus
generating redundant dirty data.

In MetaFinanceClubInfo.sol , the setClubProportion function didn't check the equality of
the two parameters.

In MetaFinanceTriggerPool.sol , the setFeeRatio function didn't validate the
newTreasuryRatio_ parameter.

Recommendation:

Consider adding checks for these parameters.

Update/Status:

It has been fixed by the Meta Finance team.

09. Recommendations to enhance the
overall security

We list some recommendations in this section. They are not mandatory but will enhance the
overall security of the system if they are adopted.

1. In MetaFinanceClubInfo.sol , consider adding functions to read the lengths of userArray
and clubArray .

Update: it has been fixed.

2. In the rewardPerToken function defined in MetaFinanceIssuePool.sol , consider changing
block.timestamp < lastUpdateTime to block.timestamp <= lastUpdateTime .

Update: it has been fixed.

3. In the setProportion function defined in MetaFinanceIssuePool.sol , consider removing
difference = difference != 0 ? difference : 1; and changing the third if to else
if .

Meta Finance

Presented by Fairyproof12

Fa
ir
yp
ro
of

af://n365

Update: the redundant code has been removed

4. In the notifyRewardAmount function defined in MetaFinanceIssuePool.sol , when
startingTime_ is greater than 0, it shouldn't be less than lastUpdateTime .

Update: startingTime_ will not be set to 0 only when it is initialized. Other than that it will
alway be set to 0.

Meta Finance

Presented by Fairyproof13

Fa
ir
yp
ro
of

	01. Introduction
	— Disclaimer
	— Methodology
	— Structure of the document
	— Documentation
	— Comments from Auditor

	02. About Fairyproof
	03. Major functions of audited code
	04. Coverage of issues
	05. Severity level reference
	06. Major areas that need attention
	- Implementation of Functions
	- Integer Overflow/Underflow
	- Access Control
	- Token Issuance and Transactions
	- State Update
	- Asset Security
	- Contract Migration/Upgrade
	- Miscellaneous

	07. List of issues by severity
	08. Issue descriptions
	09. Recommendations to enhance the overall security

