
MDEX

Version 1.0.0

Serial No. 2021011200012012

Presented by Fairyproof

Jan 12, 2021

01. Introduction

This document includes the results of the audit performed by the Fairyproof team on the MDEX
project.

Audit Start Time:

Dec 25, 2020

Audit End Time:

Jan 12, 2021

Project Token's Name:

Mdex

Audited Code's Github Repository:

https://github.com/mdexSwap/contracts

Audited Code's Github Commit Number When Audit Started:

f7590ea34540179c946f37e1d71a0ece8e9520e8

Audited Code's Github Commit Number When Audit Ended:

90ab23fbd268610ddfca9a706fc6615d4a1f6735

The goal of this audit is to review MDEX’s solidity implementation for its DEX application, study
potential security vulnerabilities, its general design and architecture, and uncover bugs that could
compromise the software in production.

We make observations on specific areas of the code that present concrete problems, as well as
general observations that traverse the entire codebase horizontally, which could improve its
quality as a whole.

This audit only applies to the specified code, software or any materials supplied by the MDEX
team for specified versions. Whenever the code, software, materials, settings, environment etc is
changed, the comments of this audit will no longer apply.

— Disclaimer
Note that as of the date of publishing, the contents of this report reflect the current
understanding of known security patterns and state of the art regarding system security. You
agree that your access and/or use, including but not limited to any associated services, products,
protocols, platforms, content, and materials, will be at your sole risk.

MDEX

Presented by Fairyproof1

Fa
ir
yp
ro
of

af://n0
https://github.com/mdexSwap/contracts
af://n21

The review does not extend to the compiler layer, or any other areas beyond the programming
language, or other programming aspects that could present security risks. If the audited source
files are smart contract files, risks or issues introduced by using data feeds from offchain sources
are not extended by this review either.

Given the size of the project, the findings detailed here are not to be considered exhaustive, and
further testing and audit is recommended after the issues covered are fixed.

To the fullest extent permitted by law, we disclaim all warranties, expressed or implied, in
connection with this report, its content, and the related services and products and your use
thereof, including, without limitation, the implied warranties of merchantability, fitness for a
particular purpose, and non-infringement.

We do not warrant, endorse, guarantee, or assume responsibility for any product or service
advertised or offered by a third party through the product, any open source or third-party
software, code, libraries, materials, or information linked to, called by, referenced by or accessible
through the report, its content, and the related services and products, any hyperlinked websites,
any websites or mobile applications appearing on any advertising, and we will not be a party to or
in any way be responsible for monitoring any transaction between you and any third-party
providers of products or services.

FOR AVOIDANCE OF DOUBT, THE REPORT, ITS CONTENT, ACCESS, AND/OR USAGE THEREOF,
INCLUDING ANY ASSOCIATED SERVICES OR MATERIALS, SHALL NOT BE CONSIDERED OR RELIED
UPON AS ANY FORM OF FINANCIAL, INVESTMENT, TAX, LEGAL, REGULATORY, OR OTHER ADVICE.

— Methodology
The above files' code was studied in detail in order to acquire a clear impression of how the its
specifications were implemented. The codebase was then subject to deep analysis and scrutiny,
resulting in a series of observations. The problems and their potential solutions are discussed in
this document and, whenever possible, we identify common sources for such problems and
comment on them as well.

The Fairyproof auditing process follows a routine series of steps:

1. Code review that includes the following
i. Review of the specifications, sources, and instructions provided to Fairyproof to make sure
we understand the size, scope, and functionality of the project's source code.
ii. Manual review of code, which is the process of reading source code line-by-line in an
attempt to identify potential vulnerabilities.
iii. Comparison to specification, which is the process of checking whether the code does what
the specifications, sources, and instructions provided to Fairyproof describe.

2. Testing and automated analysis that includes the following:
i. Test coverage analysis, which is the process of determining whether the test cases are
actually covering the code and how much code is exercised when we run the test cases.
ii. Symbolic execution, which is analyzing a program to determine what inputs cause each
part of a program to execute.

3. Best practices review, which is a review of the source code to improve maintainability,
security, and control based on the established industry and academic practices,
recommendations, and research.

— Structure of the document

MDEX

Presented by Fairyproof2

Fa
ir
yp
ro
of

af://n29
af://n40

Low

Serial Number Auditor Audit Time Result

2021011200012012 Fairyproof Security Team 2020.12.25 - 2021.01.12

This report contains a list of issues and comments on all the above source files. Each issue is
assigned a severity level based on the potential impact of the issue and recommendations to fix it,
if applicable. For ease of navigation, an index by topic and another by severity are both provided
at the beginning of the report.

— Documentation
For this audit, we used the following sources of truth about how the DEX application should work:

https://mdex.com

These were considered the specification, and when discrepancies arose with the actual code
behavior, we consulted with the MDEX team or reported an issue.

— Comments from Auditor

Summary:

The Fairyproof security team used its auto analysis tools and manual work to audit the project.
During the audit, 4 risks of critical-severity, 1 risk of high-severity, 3 risks of medium-severity and
11 risks of low-severity were uncovered. 4 risks of critical-severity, 1 risk of high-severity, 3 risks of
medium-severity and 7 risks of low-severity have been fixed, 4 risk of low-severity have been
confirmed.

02. About Fairyproof

MDEX

Presented by Fairyproof3

Fa
ir
yp
ro
of

af://n43
https://mdex.com/
af://n49
af://n56

Fairyproof is a leading technology firm in the blockchain industry, providing consulting and
security audits for organizations. Fairyproof has developed industry security standards for
designing and deploying blockchain applications.

03. Major functions of audited code

The audited code mainly implements a DEX application.

04. Coverage of issues

The issues that the Fairyproof team covered when conducting the audit include but are not
limited to the following ones:

Re-entrancy Attack
Replay Attack
Reordering Attack
Miner's Advantage
Rollback Attack
DDoS Attack
Transaction Ordering Attack
Race Condition
Access Control
Integer Overflow/Underflow
Timestamp Attack
Gas Consumption
Inappropriate Callback Function
Function Visibility
Implementation Vulnerability
Uninitialized Storage Pointer
Arithmetic Precision
Tx.origin
Fake Deposit
Shadow Variable
Design Vulnerability
Token Issuance
Admin Rights
Inappropriate Proxy Design
Inappropriate Use of Slots
Asset Security
Contract Upgrade/Migration

MDEX

Presented by Fairyproof4

Fa
ir
yp
ro
of

https://www.fairyproof.com/
af://n68
af://n80

Code Improvement
Misc

05. Severity level reference

Every issue in this report was assigned a severity level from the following:

Critical severity issues need to be fixed as soon as possible.

High severity issues will probably bring problems and should be fixed.

Medium severity issues could potentially bring problems and should eventually be fixed.

Low severity issues are minor details and warnings that can remain unfixed but would be better
fixed at some point in the future.

Informational is not an issue or risk but a suggestion for code improvement.

06. List of issues by severity

MDEX

Presented by Fairyproof5

Fa
ir
yp
ro
of

af://n145
af://n177

Confirmed

Confirmed

Confirmed

Confirmed

Index Title Issue/Risk Severity Status

FP-1
Use of Inappropriate

Price Feeds
Design Vulnerability Critical ✓ Fixed

FP-2 Incorrect Algorithm Design Vulnerability Critical ✓ Fixed

FP-3 Edge Case Error Design Vulnerability Critical ✓ Fixed

FP-4
Inappropriate Minter

Setting
Design Vulnerability Critical ✓ Fixed

FP-5 Inappropriate Setting Design Vulnerability High ✓ Fixed

FP-6 Missing require Check
Implementation

Vulnerability
Medium ✓ Fixed

FP-7 Missing require Check
Implementation

Vulnerability
Medium ✓ Fixed

FP-8 Missing require Check
Implementation

Vulnerability
Medium ✓ Fixed

FP-9 Deprecated Usage Code Improvement Low ✓ Fixed

FP-10 Deprecated Usage Code Improvement Low ✓ Fixed

FP-11
Inappropriately Setting

Variable
Implementation

Vulnerability
Low ✓ Fixed

FP-12
Inappropriate Variable

Naming
Code Improvement Low ✓ Fixed

FP-13 Unnecessary Function Code Improvement Low ✓ Fixed

FP-14
Inappropriate Function

Naming
Code Improvement Low ✓ Fixed

FP-15
Inappropriate Variable

Naming
Code Improvement Low ✓ Fixed

FP-16
Inappropriate
Assumption

Design Vulnerability Low

FP-17
Incorrect Use of Price

Feeds
Design Vulnerability Low

FP-18
Repeated Use of
Number Literal

Design Vulnerability Low

FP-19
Repeated Use of
Number Literal

Design Vulnerability Low

MDEX

Presented by Fairyproof6

Fa
ir
yp
ro
of

af://n199

07. Issue descriptions

[FP-1] Use of Inappropriate Price Feeds Critical ✓ Fixed

Issue/Risk: Design Vulnerability

Description:

In line 326 of SwapMining.sol , the code section was as follows:

And in lines 333 - 334, the code section was as follows:

These code sections used the function price in Factory.sol as price feeds. However the price
returned by the price function could be easily manipulated.

Recommendation:

Considering changing the implementation of the function price in Factory.sol .

Update/Status:

It has been fixed by the MDEX team.

[FP-2] Incorrect Algorithm Critical ✓ Fixed

Issue/Risk: Design Vulnerability

Description:

In line 254 of SwapMining.sol , the code section was as follows:

uint256 quantity = price.mul(amount).div(10 **

uint256(IERC20(targetToken).decimals()));

The algorithm was incorrect.

Recommendation:

Consider changing targetToken to output . The recommended change is as follows:

uint256 quantity = price.mul(amount).div(10 ** uint256(IERC20(output).decimals()));

Update/Status:

It has been fixed by the MDEX team.

price = IMdexPair(IMdexFactory(factory).getPair(token,

anchorToken)).price(token, baseDecimal);

uint256 price0 = IMdexPair(IMdexFactory(factory).getPair(token,

base)).price(token, baseDecimal);

uint256 price1 = IMdexPair(IMdexFactory(factory).getPair(base,

anchorToken)).price(base, decimal);

MDEX

Presented by Fairyproof7

Fa
ir
yp
ro
of

af://n199

[FP-3] Edge Case Error Critical ✓ Fixed

Issue/Risk: Design Vulnerability

Description:

In line 139 of CoinChef.sol , in the implementation of the updatePool function,
when block.number > endBlock , execution of updatePool would set pool.lastRewardBlock to
the current block's block.number in line 165 as follows:

pool.lastRewardBlock = block.number;

And this would cause updatePool to fail in lines 158 - 159 shown as follows in all subsequent
calls:

Recommendation:

Consider changing the implementation of updatePool , the recommended change is as follows:

Update/Status:

It has been fixed by the MDEX team.

uint256 number = block.number > endBlock ? endBlock : block.number;

uint256 multiplier = number.sub(pool.lastRewardBlock);

// Update reward variables of the given pool to be up-to-date.

function updatePool(uint256 _pid) public {

 PoolInfo storage pool = poolInfo[_pid];

 uint256 number = block.number > endBlock ? endBlock : block.number;

 if (number <= pool.lastRewardBlock) {

 return;

 }

 uint256 lpSupply;

 if (isSushiLP(address(pool.lpToken))) {

 if (pool.totalAmount == 0) {

 pool.lastRewardBlock = number;

 return;

 }

 lpSupply = pool.totalAmount;

 } else {

 lpSupply = pool.lpToken.balanceOf(address(this)); //1000000000000000000

 if (lpSupply == 0) {

 pool.lastRewardBlock = number;

 return;

 }

 }

 uint256 multiplier = number.sub(pool.lastRewardBlock);

 uint256 mdxReward =

multiplier.mul(mdxPerBlock).mul(pool.allocPoint).div(totalAllocPoint);

 bool minRet = mdx.mint(address(this), mdxReward);

 if (minRet) {

 pool.accMdxPerShare =

pool.accMdxPerShare.add(mdxReward.mul(1e12).div(lpSupply));

 }

 pool.lastRewardBlock = number;

}

MDEX

Presented by Fairyproof8

Fa
ir
yp
ro
of

[FP-4] Inappropriate Minter Setting Critical ✓ Fixed

Issue/Risk: Design Vulnerability

Description:

In MdxToken.sol , the function setMinter had a modifier onlyOwner which only allowed the
owner to call this function. Since the MdxToken.sol contract was Ownable , the owner
himself/hersef or an attacker who compromised the owner right could exploit the contract by
changing minter to mint tokens at will.

Recommendation:

Consider changing the minter setting and removing Ownable to reduce the attack surface. The
recommended change is as follows:

Update/Status:

It has been fixed by the MDEX team.

// SPDX-License-Identifier: MIT

pragma solidity ^0.6.0;

import "@openzeppelin/contracts/token/ERC20/ERC20.sol";

contract MdxToken is ERC20("MDX Token", "MDX") {

 uint256 private constant maxSupply = 30000000 * 1e18; // the total

supply

 address public minter;

 // mint with max supply

 function mint(address _to, uint256 _amount) public onlyMinter returns (bool)

{

 if (_amount.add(totalSupply()) > maxSupply) {

 return false;

 }

 _mint(_to, _amount);

 return true;

 }

 // set minter only once

 function setMinter(address _newMinter) external {

 require(minter == address(0), "has set up");

 require(_newMinter != address(0), "is zero address");

 minter = _newMinter;

 }

 // modifier for mint function

 modifier onlyMinter() {

 require(msg.sender == minter, "caller is not the minter");

 _;

 }

}

MDEX

Presented by Fairyproof9

Fa
ir
yp
ro
of

[FP-5] Inappropriate Setting High ✓ Fixed

Issue/Risk: Design Vulnerability

Description:

In line 151 of SwapMining.sol , the function setTargetToken changed the target token that was
used as the unit of token quantity. When this function changed the target token it might change
the existing quantity of a token that used this target token as the unit. Affected lines included
lines 258 and 261 as follows:

user.quantity = user.quantity.add(quantity);

Recommendation:

Consider removing the function setTargetToken and using a uniform token as the target token.

Update:

the function setTargetToken has been removed.

Status:

It has been fixed by the MDEX team.

[FP-6] Missing require Check Medium ✓ Fixed

Issue/Risk: Implementation Vulnerability

Description:

In line 77 of SwapMining.sol , the implementation of the function addPair needed a require
check for the _pair input parameter. If _pair was set to address(0) by the caller of the
function addPair , execution of the function massMintPools would fail.

Recommendation:

Consider adding the following statement before the conditional check if (_withUpdate) { :

require(_pair != address(0), "_pair is the zero address");。

Update/Status:

It has been fixed by the MDEX team.

[FP-7] Missing require Check Medium ✓ Fixed

Issue/Risk: Implementation Vulnerability

Description:

In line 149 of HecoPool.sol , the function add needed a "require" check for the _lpToken input
parameter. If _lpToken was set to address(0) by the caller of the function add , execution of
the function massUpdatePools would fail.

Recommendation:

MDEX

Presented by Fairyproof10

Fa
ir
yp
ro
of

Consider adding the following statement before the conditional check if (_withUpdate) { :

require(address(_lpToken) != address(0), "_lpToken is the zero address");。

Update: the MDEX team added a require check.

Status:

It has been fixed by the MDEX team.

[FP-8] Missing require Check Medium ✓ Fixed

Issue/Risk: Implementation Vulnerability

Description:

In line 98 of CoinChef.sol , the implementation of the function add needed a "require" check for
the _lpToken input parameter. If _lpToken was set to address(0) by the caller of the function
add , execution of the function massUpdatePools would fail.

Recommendation:

Consider adding the following statement before the conditional check if (_withUpdate) { :

require(address(_lpToken) != address(0), "_lpToken is the zero address");。

Update:

the MDEX team added a require check for address(_lpToken) != address(0) .

Status:

It has been fixed by the MDEX team.

[FP-9] Deprecated Usage Low ✓ Fixed

Issue/Risk: Code Improvement

Description:

In line 199 of GovernorAlpha.sol , the usage of .value(...) was deprecated. Here was the
code section:

timelock.executeTransaction.value(proposal.values[i])(proposal.targets[i],

proposal.values[i], proposal.signatures[i], proposal.calldatas[i], proposal.eta);

Recommendation:

Consider using {value: ...} instead. The recommended change is as follows:

timelock.executeTransaction{value:proposal.values[i]}(proposal.targets[i],

proposal.values[i], proposal.signatures[i], proposal.calldatas[i], proposal.eta);

Update/Status: it has been fixed by the MDEX team.

[FP-10] Deprecated Usage Low ✓ Fixed

MDEX

Presented by Fairyproof11

Fa
ir
yp
ro
of

Issue/Risk: Code Improvement

Description:

In line 99 of GovernorAlpha.sol , the code section was as follows:

(bool success, bytes memory returnData) = target.call.value(value)(callData);

The usage of call.value(value)(callData) was deprecated.

Compiler warnings were generated.

Recommendation:

Consider changing

(bool success, bytes memory returnData) = target.call.value(value)(callData);

to

(bool success, bytes memory returnData) = target.call{value:value}(callData);

Update/Status:

It has been fixed by the MDEX team.

[FP-11] Inappropriately Setting Variable Low ✓ Fixed

Issue/Risk: Implementation Vulnerability

Description:

In Factory.sol , two functions were used to retrieve and set the value of initCodeHash
respectively. Only the feeToSetter was allowed to set the value and only set it once. If the value
was inappropriately set there would be no chance to reset it. This could cause potential risks.

Recommendation:

Consider setting the value in the constructor by adding the following statement in the
constructor:

initCodeHash = keccak256(abi.encodePacked(type(MdexPair).creationCode));

and commenting out some of the lines that set the value in other functions of this contract and
the IMdexFactory.sol contract.

The recommened code changes are as follows:

and consider commenting out the following lines as well:

Line 330: bool public initCode = false;

Line 381: setInitCodeHash

Line 397: getInitCodeHash

constructor(address _feeToSetter) public {

 feeToSetter = _feeToSetter;

 initCodeHash = keccak256(abi.encodePacked(type(MdexPair).creationCode));

}

MDEX

Presented by Fairyproof12

Fa
ir
yp
ro
of

Line 12: function initCodeHash() external view returns (bytes32); in the
interface/IMdexFactory.sol contract

Line 28: function setInitCodeHash(bytes32) external; in
the interface/IMdexFactory.sol contract

Update/Status:

It has been fixed by the MDEX team.

[FP-12] Inappropriate Variable Naming Low ✓ Fixed

Issue/Risk: Code Improvement

Description:

In line 319 of SwapMining.sol , the variables base , baseDecimal and decimal were
inappropriately named in the function getPrice . The code was as follows:

These variables were named in a way that didn't describe their behavior.

Recommendation:

Consider renaming baseDecimal to tokenDecimas , base to intermediate and decimal to
interDecimal and making changes in all places where these variables were used accordingly.

Update/Status:

It has been fixed by the MDEX team.

[FP-13] Unnecessary Function Low ✓ Fixed

Issue/Risk: Code Improvement

Description:

In line 146 of SwapMining.sol , the factory contract had state variables(data), therefore it was
very unlikely the contract would be replaced by calling the function setFactory . And this
function was unnecessary.

Recommendation:

Consider removing the function setFactory .

Update:

The MDEX team removed the function.

Status:

It has been fixed by the MDEX team.

uint256 baseDecimal = 10 ** uint256(IERC20(token).decimals());

address base = getWhitelist(index);

uint256 decimal = 10 ** uint256(IERC20(base).decimals());

MDEX

Presented by Fairyproof13

Fa
ir
yp
ro
of

[FP-14] Inappropriate Function Naming Low ✓ Fixed

Issue/Risk: Code Improvement

Description:

In line 305 of SwapMining.sol , the function getPoolList wasn't named in a way that described
its behavior.

Recommendation:

Consider renaming it to getPoolDetail .

Update:

The MDEX team renamed getPoolList to getPoolInfo .

Status:

It has been fixed by the MDEX team.

[FP-15] Inappropriate Variable Naming Low ✓ Fixed

Issue/Risk: Code Improvement

Description:

In line 474 of HecoPool.sol , the function modifier notPause() had a variable pause which was
not named in a way that described its behavior.

In addition, notPause literally means "not paused". However what it did was to set pause ==
true which meant "pause".

Recommendation:

Consider renaming pause to paused , setting "pause" to "false" and changing the implementation
of the function modifier notPause to make it behave what it literally means.

In addition, consider changing

 require(pause == true) to

require(pause) and changing

require(pause == false) to

require(!false)

Update/Status:

These have been fixed by the MDEX team.

[FP-16] Inappropriate Assumption Low Confirmed

Issue/Risk: Design Vulnerability

Description:

MDEX

Presented by Fairyproof14

Fa
ir
yp
ro
of

In line 23 of GovernorAlpha.sol , the code section was as follows:

function votingPeriod() public pure returns (uint) { return 86400; } // ~3 days in

blocks (assuming 3s blocks)

This implementation assumed blocks on Ethereum were generated once every 3 seconds.
However this assumption didn't always hold true. If the rate of block generation was much lower
than that, execution of this code might not follow the expected logic.

Recommendation:

Consider changing 86400 to 17280 (assuming blocks are generated once every 15 seconds) if this
implementation will be deployed on Ethereum and changing 86400 to other values accordingly
if it will be deployed on other EVM compatible blockchains.

Update:

The MDEX team prefers to keep it for now since the implementation will be deployed on a non-
Ethereum blockchain.

Status:

It has been confirmed by the MDEX team.

[FP-17] Incorrect Use of Price Feeds Low Confirmed

Issue/Risk: Design Vulnerability

Description:

In line 311 of Factory.sol , the function price took an instant price feed as the prices for
trading two tokens. However the prices could move significantly in a single block and this could
cause the prices to be manipulated by an attacker.

Recommendation:

Consider using time weighted average prices from multiple blocks. Good examples can be found
in Uniswap's ExampleSlidingWindowOracle.sol and ExampleOracleSimple.sol .

Update:

The MDEX team prefers to keep it for now since the function is only used as price inquiry rather
than trading. It will not cause risks.

Status:

It has been confirmed by the MDEX team.

[FP-18] Repeated Use of Number Literal Low

Confirmed

Issue/Risk: Code Improvement

Description:

The number literal 1e12 in HecoPool.sol was repeatedly used in multiple lines in the contract.

Recommendation:

MDEX

Presented by Fairyproof15

Fa
ir
yp
ro
of

Consider defining a constant and using that constant instead of 1e12 in all the lines where 1e12
was used.

Update:

It has been acknowledged by the MDEX team. And the team prefers to keep it for now and may
make a change later.

Status:

It has been confirmed by the MDEX team.

[FP-19] Repeated Use of Number Literal Low

Confirmed

Issue/Risk: Code Improvement

Description:

In CoinChef.sol , the number literal 1e12 was repeatedly used in multiple lines in the contract.

Recommendation:

Consider defining a constant and using that constant instead of 1e12 in all the lines where 1e12
is used.

Update: it has been acknowledged by the MDEX team. The team prefers to keep it for now and
may make a change later.

Status:

It has been confirmed by the MDEX team.

08. Recommendations to enhance the
overall security

We list some recommendations in this section. They are not mandatory but will enhance the
overall security of the system if they are adopted.

- N/A

MDEX

Presented by Fairyproof16

Fa
ir
yp
ro
of

af://n212
af://n215

	01. Introduction
	— Disclaimer
	— Methodology
	— Structure of the document
	— Documentation
	— Comments from Auditor

	02. About Fairyproof
	03. Major functions of audited code
	04. Coverage of issues
	05. Severity level reference
	06. List of issues by severity
	07. Issue descriptions
	08. Recommendations to enhance the overall security
	- N/A

