
IBSClassic Token

Version 1.0.0

Serial No. 2022121400012017

Presented by Fairyproof

December 14, 2022



 

01. Introduction  
 

This document includes the results of the audit performed by the Fairyproof team on the International 
Blockchain ServiceToken Issuance project.

Audit Start Time:

December 13, 2022

Audit End Time:

December 14, 2022

Audited Source File's Address: 

https://bscscan.com/token/0x99ce9D59568941A623a46e5598515B06862d13eC#code

 

The goal of this audit is to review International Blockchain Service’s solidity implementation for its Token 
Issuance function, study potential security vulnerabilities, its general design and architecture, and uncover 
bugs that could compromise the software in production.

We make observations on specific areas of the code that present concrete problems, as well as general 
observations that traverse the entire codebase horizontally, which could improve its quality as a whole.

This audit only applies to the specified code, software or any materials supplied by the International 
Blockchain Service team for  specified versions. Whenever the code, software, materials, settings, 
environment etc is changed, the comments of this audit will no longer apply. 

 

— Disclaimer  
Note that as of the date of publishing, the contents of this report reflect the current understanding of 
known security patterns and state of the art regarding system security. You agree that your access and/or 
use, including but not limited to any associated services, products, protocols, platforms, content, and 
materials, will be at your sole risk. 

The review does not extend to the compiler layer, or any other areas beyond the programming language, or 
other programming aspects that could present security risks. If the audited source files are smart contract 
files, risks or issues introduced by using data feeds from offchain sources are not extended by this review 
either. 

Given the size of the project, the findings detailed here are not to be considered exhaustive, and further 
testing and audit is recommended after the issues covered are fixed.  

To the fullest extent permitted by law, we disclaim all warranties, expressed or implied, in connection with 
this report, its content, and the related services and products and your use thereof, including, without 
limitation, the implied warranties of merchantability, fitness for a particular purpose, and non-infringement. 

IBSClassic Token

1 Presented by Fairyproof

Fa
iry

pr
oo

f

Fa
iry

pr
oo

f
Fa

iry
pr
oo

f
Fa

iry
pr
oo

f
Fa

iry
pr
oo

f
Fa

iry
pr
oo

f

Fa
iry

pr
oo

f
Fa

iry
pr
oo

f
Fa

iry
pr
oo

f

https://bscscan.com/token/0x99ce9D59568941A623a46e5598515B06862d13eC#code


We do not warrant, endorse, guarantee, or assume responsibility for any product or service advertised or 
offered by a third party through the product, any open source or third-party software, code, libraries, 
materials, or information linked to, called by, referenced by or accessible through the report, its content, 
and the related services and products, any hyperlinked websites, any websites or mobile applications 
appearing on any advertising, and we will not be a party to or in any way be responsible for monitoring any 
transaction between you and any third-party providers of products or services. 

FOR AVOIDANCE OF DOUBT, THE REPORT, ITS CONTENT, ACCESS, AND/OR USAGE THEREOF, INCLUDING 
ANY ASSOCIATED SERVICES OR MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF 
FINANCIAL, INVESTMENT, TAX, LEGAL, REGULATORY, OR OTHER ADVICE.

 

— Methodology  
The above files' code was studied in detail in order to acquire a clear impression of how the its 
specifications were implemented. The codebase was then subject to deep analysis and scrutiny, resulting in 
a series of observations. The problems and their potential solutions are discussed in this document and, 
whenever possible, we identify common sources for such problems and comment on them as well.

The Fairyproof auditing process follows a routine series of steps:

1. Code Review, Including:

Project Diagnosis 

Understanding the size, scope and functionality of your project’s source code based on the specifications, 
sources, and instructions provided to Fairyproof.

Manual Code Review

Reading your source code line-by-line to identify potential vulnerabilities.

Specification Comparison

Determining whether your project’s code successfully and efficiently accomplishes or executes its functions 
according to the specifications, sources, and instructions provided to Fairyproof.

2. Testing and Automated Analysis, Including:

Test Coverage Analysis

Determining whether the test cases cover your code and how much of your code is exercised or executed 
when test cases are run.

Symbolic Execution

Analyzing a program to determine the specific input that causes different parts of a program to execute its 
functions.

3. Best Practices Review

Reviewing the source code to improve maintainability, security, and control based on the latest established 
industry and academic practices, recommendations, and research.

 

IBSClassic Token

2 Presented by Fairyproof

Fa
iry

pr
oo

f

Fa
iry

pr
oo

f
Fa

iry
pr
oo

f
Fa

iry
pr
oo

f
Fa

iry
pr
oo

f
Fa

iry
pr
oo

f

Fa
iry

pr
oo

f
Fa

iry
pr
oo

f
Fa

iry
pr
oo

f



Serial Number Auditor Audit Time Result

2022121400012017 Fairyproof Security Team Dec 13, 2022 - Dec 14, 2022 Passed

— Structure of the document  
This report contains a list of issues and comments on all the above source files. Each issue is assigned a 
severity level based on the potential impact of the issue and recommendations to fix it, if applicable. For 
ease of navigation, an index by topic and another by severity are both provided at the beginning of the 
report.

 

— Documentation  
For this audit, we used the following sources of truth about how the token issuance function should work:

Source Code: https://bscscan.com/token/0x99ce9D59568941A623a46e5598515B06862d13eC#code

These were considered the specification, and when discrepancies arose with the actual code behavior, we 
consulted with the International Blockchain Service team or reported an issue. 

 

— Comments from Auditor  

 

Summary: 

The Fairyproof security team used its auto analysis tools and manual work to audit the project. During the 
audit, no issue were uncovered. 

 

 

02. About Fairyproof  

IBSClassic Token

3 Presented by Fairyproof

Fa
iry

pr
oo

f

Fa
iry

pr
oo

f
Fa

iry
pr
oo

f
Fa

iry
pr
oo

f
Fa

iry
pr
oo

f
Fa

iry
pr
oo

f

Fa
iry

pr
oo

f
Fa

iry
pr
oo

f
Fa

iry
pr
oo

f

https://bscscan.com/token/0x99ce9D59568941A623a46e5598515B06862d13eC#code


Fairyproof is a leading technology firm in the blockchain industry, providing consulting and security audits 
for organizations. Fairyproof has developed industry security standards for designing and deploying 
blockchain applications.

 

 

03. Introduction to International Blockchain
Service

 

IBSclassic  is  a Native token of IBSA Pvt ltd company, also a Sister concern of International Blockchain 
service and academy. IBSclassic is basically used for payment gateway of ibs Insurance project and Ibs 
Realestate project and all upcoming project of IBSA pvt ltd.

 

04. Major functions of audited code  
 

The audited code mainly implements a token issuance function. Here are the details:

Token Standard: BEP-20
Token Address: 0x99ce9D59568941A623a46e5598515B06862d13eC
Token Name: IBSClassic
Token Symbol: IBSC
Decimals: 18
Max Supply: 100,000,000,000
Pausable: Yes

 

Note: 

In the current token contract, token transfers can be paused by owner.

 

 

05. Coverage of issues  
 

The issues that the Fairyproof team covered when conducting the audit include but are not limited to the 
following ones:

Access Control
Admin Rights
Arithmetic Precision
Code Improvement

IBSClassic Token

4 Presented by Fairyproof

Fa
iry

pr
oo

f

Fa
iry

pr
oo

f
Fa

iry
pr
oo

f
Fa

iry
pr
oo

f
Fa

iry
pr
oo

f
Fa

iry
pr
oo

f

Fa
iry

pr
oo

f
Fa

iry
pr
oo

f
Fa

iry
pr
oo

f

https://www.fairyproof.com/


Contract Upgrade/Migration
Delete Trap
Design Vulnerability
DoS Attack
EOA Call Trap
Fake Deposit
Function Visibility
Gas Consumption
Implementation Vulnerability
Inappropriate Callback Function
Injection Attack
Integer Overflow/Underflow
IsContract Trap
Miner's Advantage
Misc
Price Manipulation
Proxy selector clashing
Pseudo Random Number
Re-entrancy Attack
Replay Attack
Rollback Attack
Shadow Variable
Slot Conflict
Token Issuance
Tx.origin Authentication
Uninitialized Storage Pointer

 

 

06. Severity level reference  
 

Every issue in this report was assigned a severity level from the following:

Critical    severity issues need to be fixed as soon as possible.

 

High    severity issues will probably bring problems and should be fixed.

 

Medium    severity issues could potentially bring problems and should eventually be fixed.

 

Low    severity issues are minor details and warnings that can remain unfixed but would be better fixed at 
some point in the future.

IBSClassic Token

5 Presented by Fairyproof

Fa
iry

pr
oo

f

Fa
iry

pr
oo

f
Fa

iry
pr
oo

f
Fa

iry
pr
oo

f
Fa

iry
pr
oo

f
Fa

iry
pr
oo

f

Fa
iry

pr
oo

f
Fa

iry
pr
oo

f
Fa

iry
pr
oo

f



 

Informational    is not an issue or risk but a suggestion for code improvement.

 

 

07. Major areas that need attention  
 

Based on the provided source code the Fairyproof team focused on the possible issues and risks related to 
the following functions or areas.

 

- Function Implementation  
We checked whether or not the functions were correctly implemented.
We didn't find issues or risks in these functions or areas at the time of writing.

 

- Access Control  
We checked each of the functions that could modify a state, especially those functions that could only be 
accessed by owner or administrator
We didn't find issues or risks in these functions or areas at the time of writing.

 

- Token Issuance & Transfer  
We examine token issuance and transfers for situations that could harm the interests of holders.
We didn't find issues or risks in these functions or areas at the time of writing.

 

- State Update  
We checked some key state variables which should only be set at initialization.
We didn't find issues or risks in these functions or areas at the time of writing.

 

- Asset Security  
We checked whether or not all the functions that transfer assets were safely handled.
We didn't find issues or risks in these functions or areas at the time of writing.

 

- Miscellaneous

IBSClassic Token

6 Presented by Fairyproof

Fa
iry

pr
oo

f

Fa
iry

pr
oo

f
Fa

iry
pr
oo

f
Fa

iry
pr
oo

f
Fa

iry
pr
oo

f
Fa

iry
pr
oo

f

Fa
iry

pr
oo

f
Fa

iry
pr
oo

f
Fa

iry
pr
oo

f



- Miscellaneous  
We check the code for optimization and robustness.
We didn't find issues or risks in these functions or areas at the time of writing.

 

 

08. issues by severity  
 

- N/A  
 

09. Issue descriptions  
 

- N/A  
 

 

10. Recommendations to enhance the overall
security

 

We list some recommendations in this section. They are not mandatory but will enhance the overall security 
of the system if they are adopted.  

Consider managing the owner's access control with great care and transferring it to a multi-sig wallet 
or DAO when necessary.

 

11. Appendices  
 

11.1 Unit Test  
 

IBSClassic Token

7 Presented by Fairyproof

Fa
iry

pr
oo

f

Fa
iry

pr
oo

f
Fa

iry
pr
oo

f
Fa

iry
pr
oo

f
Fa

iry
pr
oo

f
Fa

iry
pr
oo

f

Fa
iry

pr
oo

f
Fa

iry
pr
oo

f
Fa

iry
pr
oo

f



1. IBSClassic-test.js  

const { expect } = require("chai");
const { ethers } = require("hardhat");

describe("Pausable ERC20Token unit test", function () {
    let token;
    let owner,user1,user2,users;
    const MAX_SUPPLY = ethers.utils.parseEther("100000000000");

    beforeEach(async () => {
        [owner,user1,user2,...users] = await ethers.getSigners();
        const IBSClassic = await ethers.getContractFactory("IBSClassic");
        token = await 
IBSClassic.deploy("IBSClassic",'IBSC',18,100000000000,owner.address);
    });

    describe("init status test", () => {
        it("meta data and supply check", async () => {
            expect(await token.name()).to.be.equal("IBSClassic");
            expect(await token.symbol()).to.be.equal("IBSC");
            expect(await token.decimals()).to.be.equal(18);
            expect(await token.totalSupply()).to.be.equal(MAX_SUPPLY);
            expect(await token.balanceOf(owner.address)).to.be.equal(MAX_SUPPLY);
            expect(await token.paused()).to.be.equal(false);
            expect(await token.owner()).to.be.equal(owner.address);
        });
    });

    describe("Ownable test", async () => {
        it("transferOwnership should be failed while not owner", async () => {
            await 
expect(token.connect(user1).transferOwnership(user2.address)).to.be.reverted;
        });
        it("transferOwnership to zero should be failed ", async() => {
            await 
expect(token.transferOwnership(ethers.constants.AddressZero)).to.be.reverted;
        });
        it("transferOwnership should change state and emit event", async () => {
            await expect(token.transferOwnership(user1.address)).to.be.emit(
                token,"OwnershipTransferred"
            ).withArgs(owner.address,user1.address);
            expect(await token.owner()).to.be.equal(user1.address);
        });
    });

    describe("Pausable unit test", () => {
        // pause
        it("pause should change state and emit event",async () => {

1
2
3
4
5
6
7
8
9

10
11
12

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

30
31
32

33
34
35
36
37
38
39
40
41
42
43
44

IBSClassic Token

8 Presented by Fairyproof

Fa
iry

pr
oo

f

Fa
iry

pr
oo

f
Fa

iry
pr
oo

f
Fa

iry
pr
oo

f
Fa

iry
pr
oo

f
Fa

iry
pr
oo

f

Fa
iry

pr
oo

f
Fa

iry
pr
oo

f
Fa

iry
pr
oo

f



            await expect(token.pause()).to.be.emit(
                token,"Pause"
            );
            expect(await token.paused()).to.be.equal(true);
        });

        it("pause should be failed while has paused", async () => {
            await token.pause();
            // whenNotPaused
            await expect(token.pause()).to.be.reverted;
        })

        // unpause
        it("unpause should be failed while not paused", async () => {
            await expect(token.unpause()).to.be.reverted;
        });

        it("unpause should change state and emit event",async () => {
            // pause first
            await token.pause();
            expect(await token.paused()).to.be.equal(true);
            // unpause
            await expect(token.unpause()).to.be.emit(
                token,"Unpause"
            );
            expect(await token.paused()).to.be.equal(false);
        });
    });

    describe("transfer unit test", () => {
        it("transfer should change state and emit event", async () => {
            // emit event
            await expect(token.transfer(user1.address,10000)).to.be.emit(
                token,"Transfer"
            ).withArgs(owner.address,user1.address,10000);
            // check status
            expect(await 
token.balanceOf(owner.address)).to.be.equal(MAX_SUPPLY.sub(10000));
            expect(await token.balanceOf(user1.address)).to.be.equal(10000);
            expect(await token.totalSupply()).to.be.equal(MAX_SUPPLY);
        });

        it("transfer should be failed while paused", async () => {
            await token.pause();
            await expect(token.transfer(user1.address,10000)).to.be.reverted;
        });

        it("transfer to zero should be failed", async () => {

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81

82
83
84
85
86
87
88
89
90
91

IBSClassic Token

9 Presented by Fairyproof

Fa
iry

pr
oo

f

Fa
iry

pr
oo

f
Fa

iry
pr
oo

f
Fa

iry
pr
oo

f
Fa

iry
pr
oo

f
Fa

iry
pr
oo

f

Fa
iry

pr
oo

f
Fa

iry
pr
oo

f
Fa

iry
pr
oo

f



            await 
expect(token.transfer(ethers.constants.AddressZero,10000)).to.be.reverted;
        });

        it("transfer zero token should be successful", async () => {
            await token.connect(user1).transfer(user2.address,0);
            expect(await token.balanceOf(user1.address)).to.be.equal(0);
            expect(await token.balanceOf(user2.address)).to.be.equal(0);
        });

        it("transfer to self should be successful", async () => {
            await token.transfer(owner.address,10000);
            expect(await token.totalSupply()).to.be.equal(MAX_SUPPLY);
            expect(await token.balanceOf(owner.address)).to.be.equal(MAX_SUPPLY);
        });

        it("transfer beyond balance should be failed", async () => {
            await token.transfer(user1.address,100);
            await 
expect(token.connect(user1).transfer(user2.address,200)).to.be.reverted;
        });
    });

    describe("Allowance  unit test", () => {
        it("increaseApproval should be failed while paused", async () => {
            await token.pause();
            await 
expect(token.increaseApproval(user1.address,10000)).to.be.reverted;
        });

        it("decreaseApproval should be failed while paused", async () => {
            await token.pause();
            await 
expect(token.decreaseApproval(user1.address,10000)).to.be.reverted;
        });

        it("approve should be failed while paused", async () => {
            await token.pause();
            await expect(token.approve(user1.address,10000)).to.be.reverted;
        });

        it("increaseApproval and decreaseApproval should change state and emit 
event",
            async () => {
                await 
expect(token.increaseApproval(user1.address,100)).to.be.emit(
                    token,"Approval"
                ).withArgs(owner.address,user1.address,100);

92

93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109

110
111
112
113
114
115
116

117
118
119
120
121

122
123
124
125
126
127
128
129

130
131

132
133

IBSClassic Token

10 Presented by Fairyproof

Fa
iry

pr
oo

f

Fa
iry

pr
oo

f
Fa

iry
pr
oo

f
Fa

iry
pr
oo

f
Fa

iry
pr
oo

f
Fa

iry
pr
oo

f

Fa
iry

pr
oo

f
Fa

iry
pr
oo

f
Fa

iry
pr
oo

f



                expect(await 
token.allowance(owner.address,user1.address)).to.be.equal(100);

                await expect(token.decreaseApproval(user1.address,30)).to.be.emit(
                    token,"Approval"
                ).withArgs(owner.address,user1.address,100 - 30);
                expect(await 
token.allowance(owner.address,user1.address)).to.be.equal(100 - 30);

                // decreaseApproval beyond should be zero
                await token.decreaseApproval(user1.address,90);
                expect(await 
token.allowance(owner.address,user1.address)).to.be.equal(0);
        });

        it("approve should change state and emit event", async () => {
            await expect(token.approve(user1.address,100)).to.be.emit(
                token,"Approval"
            ).withArgs(owner.address,user1.address,100);
            expect(await 
token.allowance(owner.address,user1.address)).to.be.equal(100);
            // approve again
            await token.approve(user1.address,30);
            expect(await 
token.allowance(owner.address,user1.address)).to.be.equal(30);
        });
    });

    describe("TransferFrom test", () => {
        it("TransferFrom should be failed while paused", async () => {
            await token.pause();
            await 
expect(token.connect(user1).transferFrom(owner.address,user1.address,100)).to.be.r
everted;
        });

        it("TransferFrom should consume allowance and emit event", async () => {
            await 
expect(token.connect(user1).transferFrom(owner.address,user1.address,100)).to.be.r
everted;
            await token.increaseApproval(user1.address,10000);
            await 
expect(token.connect(user1).transferFrom(owner.address,user1.address,100)).to.be.e
mit(
                token,"Transfer"
            ).withArgs(owner.address,user1.address,100);
            // check state
            expect(await 
token.allowance(owner.address,user1.address)).to.be.equal(10000 - 100);

134

135
136
137
138
139

140
141
142
143

144
145
146
147
148
149
150

151
152
153

154
155
156
157
158
159
160

161
162
163
164

165
166

167
168
169
170

IBSClassic Token

11 Presented by Fairyproof

Fa
iry

pr
oo

f

Fa
iry

pr
oo

f
Fa

iry
pr
oo

f
Fa

iry
pr
oo

f
Fa

iry
pr
oo

f
Fa

iry
pr
oo

f

Fa
iry

pr
oo

f
Fa

iry
pr
oo

f
Fa

iry
pr
oo

f



 

2. UnitTestOutput  

            expect(await token.totalSupply()).to.be.equal(MAX_SUPPLY);
            expect(await token.balanceOf(user1.address)).to.be.equal(100);
            expect(await 
token.balanceOf(owner.address)).to.be.equal(MAX_SUPPLY.sub(100));
        });

        it("Can transfer zero tokens while has no approval", async () => {
            await 
expect(token.connect(user1).transferFrom(user2.address,user1.address,0)).to.be.emi
t(
                token,"Transfer"
            ).withArgs(user2.address,user1.address,0);
        });
    });

    describe("Burn test", () => {
        it("Burn should be successful while paused", async () => {
            await token.pause();
            await token.burn(100);
        });

        it("burn should reduce the balance of user and total supply", async () => 
{
            await expect(token.burn(100)).to.be.emit(
                token,"Burn"
            ).withArgs(owner.address,100);
            expect(await token.totalSupply()).to.be.equal(MAX_SUPPLY.sub(100));
            expect(await 
token.balanceOf(owner.address)).to.be.equal(MAX_SUPPLY.sub(100));
        });
        
        it("Burn beyond balance should be failed", async () => {
            await token.transfer(user1.address,100);
            await expect(token.connect(user1).burn(200)).to.be.reverted;
        });
    });
});

171
172
173

174
175
176
177

178
179
180
181
182
183
184
185
186
187
188
189

190
191
192
193
194

195
196
197
198
199
200
201
202
203

Pausable ERC20Token unit test
    init status test
      ✔ meta data and supply check (52ms)
    Ownable test
      ✔ transferOwnership should be failed while not owner
      ✔ transferOwnership to zero should be failed 

1
2
3
4
5
6

IBSClassic Token

12 Presented by Fairyproof

Fa
iry

pr
oo

f

Fa
iry

pr
oo

f
Fa

iry
pr
oo

f
Fa

iry
pr
oo

f
Fa

iry
pr
oo

f
Fa

iry
pr
oo

f

Fa
iry

pr
oo

f
Fa

iry
pr
oo

f
Fa

iry
pr
oo

f



 

 

11.2 External Functions Check Points  
 

1. IBSClassic.sol  

      ✔ transferOwnership should change state and emit event
    Pausable unit test
      ✔ pause should change state and emit event
      ✔ pause should be failed while has paused
      ✔ unpause should be failed while not paused
      ✔ unpause should change state and emit event
    transfer unit test
      ✔ transfer should change state and emit event
      ✔ transfer should be failed while paused
      ✔ transfer to zero should be failed
      ✔ transfer zero token should be successful
      ✔ transfer to self should be successful
      ✔ transfer beyond balance should be failed
    Allowance  unit test
      ✔ increaseApproval should be failed while paused
      ✔ decreaseApproval should be failed while paused
      ✔ approve should be failed while paused
      ✔ increaseApproval and decreaseApproval should change state and emit event 
(39ms)
      ✔ approve should change state and emit event
    TransferFrom test
      ✔ TransferFrom should be failed while paused
      ✔ TransferFrom should consume allowance and emit event (43ms)
      ✔ Can transfer zero tokens while has no approval
    Burn test
      ✔ Burn should be successful while paused
      ✔ burn should reduce the balance of user and total supply
      ✔ Burn beyond balance should be failed

  25 passing (2s)

7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

25
26
27
28
29
30
31
32
33
34
35
36
37
38

IBSClassic Token

13 Presented by Fairyproof

Fa
iry

pr
oo

f

Fa
iry

pr
oo

f
Fa

iry
pr
oo

f
Fa

iry
pr
oo

f
Fa

iry
pr
oo

f
Fa

iry
pr
oo

f

Fa
iry

pr
oo

f
Fa

iry
pr
oo

f
Fa

iry
pr
oo

f



Index Function Visibility
Permission
Check

Re-entrancy
Check

Injection
Check

Unit
Test

Notes

1 burn(uint256) public       Passed  

2 transfer(address,uint256) public       Passed whenNotPaused

3 transferFrom(address,address,uint256) public       Passed whenNotPaused

4 approve(address,uint256) public       Passed whenNotPausedwhenNotPaused

5 increaseApproval(address,uint) public       Passed whenNotPaused

6 decreaseApproval(address,uint) public       Passed whenNotPaused

7 blackListAddress(address,bool) public onlyOwner       redundancy

8 pause() public onlyOwner     Passed whenNotPaused

9 unpause() public onlyOwner     Passed whenPaused

10 transferOwnership(address) public onlyOwner     Passed  

11 balanceOf(address) public       Passed View

12 allowance(address,address) public       Passed View

File: contracts/IBSClassic.sol  

(Empty elements in the table represent things that are not required or relevant)

contract: IBSClassic is PausableToken

 

IBSClassic Token

14 Presented by Fairyproof

Fa
iry

pr
oo

f

Fa
iry

pr
oo

f
Fa

iry
pr
oo

f
Fa

iry
pr
oo

f
Fa

iry
pr
oo

f
Fa

iry
pr
oo

f

Fa
iry

pr
oo

f
Fa

iry
pr
oo

f
Fa

iry
pr
oo

f




	01. Introduction
	— Disclaimer
	— Methodology
	— Structure of the document
	— Documentation
	— Comments from Auditor

	02. About Fairyproof
	03. Introduction to International Blockchain Service
	04. Major functions of audited code
	05. Coverage of issues
	06. Severity level reference
	07. Major areas that need attention
	- Function Implementation
	- Access Control
	- Token Issuance & Transfer
	- State Update
	- Asset Security
	- Miscellaneous

	08.  issues by severity
	- N/A

	09. Issue descriptions
	- N/A

	10. Recommendations to enhance the overall security
	11. Appendices
	11.1 Unit Test 
	1. IBSClassic-test.js
	2. UnitTestOutput

	11.2 External Functions Check Points
	1. IBSClassic.sol
	File: contracts/IBSClassic.sol



