
FreshCut

Version 1.0.1

Serial No. 2022041300012017

Presented by Fairyproof

April 13, 2022

01. Introduction

This document includes the results of the audit performed by the Fairyproof team on the
FreshCut project.

Audit Start Time:

March 9, 2022

Audit End Time:

March 10, 2022

Audited Source Files:

The source files audited include all the files with the extension "sol" as follows:

The goal of this audit is to review FreshCut’s solidity implementation for its token issuance
function, study potential security vulnerabilities, its general design and architecture, and uncover
bugs that could compromise the software in production.

We make observations on specific areas of the code that present concrete problems, as well as
general observations that traverse the entire codebase horizontally, which could improve its
quality as a whole.

This audit only applies to the specified code, software or any materials supplied by the FreshCut
team for specified versions. Whenever the code, software, materials, settings, environment etc is
changed, the comments of this audit will no longer apply.

— Disclaimer
Note that as of the date of publishing, the contents of this report reflect the current
understanding of known security patterns and state of the art regarding system security. You
agree that your access and/or use, including but not limited to any associated services, products,
protocols, platforms, content, and materials, will be at your sole risk.

The review does not extend to the compiler layer, or any other areas beyond the programming
language, or other programming aspects that could present security risks. If the audited source
files are smart contract files, risks or issues introduced by using data feeds from off-chain sources
are not extended by this review either.

contracts/

├── FCDToken.sol

└── Vesting.sol

0 directories, 2 files

FreshCut

Presented by Fairyproof1

af://n0
af://n18

Given the size of the project, the findings detailed here are not to be considered exhaustive, and
further testing and audit is recommended after the issues covered are fixed.

To the fullest extent permitted by law, we disclaim all warranties, expressed or implied, in
connection with this report, its content, and the related services and products and your use
thereof, including, without limitation, the implied warranties of merchantability, fitness for a
particular purpose, and non-infringement.

We do not warrant, endorse, guarantee, or assume responsibility for any product or service
advertised or offered by a third party through the product, any open source or third-party
software, code, libraries, materials, or information linked to, called by, referenced by or accessible
through the report, its content, and the related services and products, any hyperlinked websites,
any websites or mobile applications appearing on any advertising, and we will not be a party to or
in any way be responsible for monitoring any transaction between you and any third-party
providers of products or services.

FOR AVOIDANCE OF DOUBT, THE REPORT, ITS CONTENT, ACCESS, AND/OR USAGE THEREOF,
INCLUDING ANY ASSOCIATED SERVICES OR MATERIALS, SHALL NOT BE CONSIDERED OR RELIED
UPON AS ANY FORM OF FINANCIAL, INVESTMENT, TAX, LEGAL, REGULATORY, OR OTHER ADVICE.

— Methodology
The above files' code was studied in detail in order to acquire a clear impression of how the its
specifications were implemented. The codebase was then subject to deep analysis and scrutiny,
resulting in a series of observations. The problems and their potential solutions are discussed in
this document and, whenever possible, we identify common sources for such problems and
comment on them as well.

The Fairyproof auditing process follows a routine series of steps:

1. Code review that includes the following
i. Review of the specifications, sources, and instructions provided to Fairyproof to make sure
we understand the size, scope, and functionality of the project's source code.
ii. Manual review of code, which is the process of reading source code line-by-line in an
attempt to identify potential vulnerabilities.
iii. Comparison to specification, which is the process of checking whether the code does what
the specifications, sources, and instructions provided to Fairyproof describe.

2. Testing and automated analysis that includes the following:
i. Test coverage analysis, which is the process of determining whether the test cases are
actually covering the code and how much code is exercised when we run the test cases.
ii. Symbolic execution, which is analyzing a program to determine what inputs cause each
part of a program to execute.

3. Best practices review, which is a review of the source code to improve maintainability,
security, and control based on the established industry and academic practices,
recommendations, and research.

— Structure of the document
This report contains a list of issues and comments on all the above source files. Each issue is
assigned a severity level based on the potential impact of the issue and recommendations to fix it,
if applicable. For ease of navigation, an index by topic and another by severity are both provided
at the beginning of the report.

FreshCut

Presented by Fairyproof2

af://n26
af://n37

Medium

Serial Number Auditor Audit Time Result

2022031000012013
Fairyproof Security
Team

Mar 9, 2022 - Mar 10,
2022

— Documentation
For this audit, we used the following sources of truth about how the token issuance function
should work:

smart contract files

These were considered the specification, and when discrepancies arose with the actual code
behavior, we consulted with the FreshCut team or reported an issue.

— Comments from Auditor

Summary:

The Fairyproof security team used its auto analysis tools and manual work to audit the project.
During the audit, 1 risk of medium-severity and 1 risk of low-severity were found. The risk of
medium-severity has been confirmed and the risk of low-severity has been fixed.

02. About Fairyproof

Fairyproof is a leading technology firm in the blockchain industry, providing consulting and
security audits for organizations. Fairyproof has developed industry security standards for
designing and deploying blockchain applications.

FreshCut

Presented by Fairyproof3

af://n40
af://n46
af://n68
https://www.fairyproof.com/

03. Major functions of audited code

The audited code mainly implements a token issuance function and here are the details:

1. Token Issuance (FCDToken.sol)

Token Name: FreshCut Diamond

Token Symbol: FCD

Token Precision: 18

Max Supply: 1,000,000,000

Mint/Burn: no additional minting/no token burn

Transaction Charge: no charge of token in transfers

Freeze/Pause Transfer: token transfer can be paused

2. Linear Vesting (Vesting.sol)

During a specified vesting period, a specified number of ERC-20 tokens and ETHs are gradually
released and sent to a specified address.

3. Admin Rights

In the FCDToken.sol file, the admin can pause token transfers or pause contract upgrades.

04. Coverage of issues

The issues that the Fairyproof team covered when conducting the audit include but are not
limited to the following ones:

Re-entrancy Attack
Replay Attack
Reordering Attack
Miner's Advantage
Rollback Attack
DDos Attack
Transaction Ordering Attack
Race Condition
Access Control
Integer Overflow/Underflow

FreshCut

Presented by Fairyproof4

af://n74
af://n109

Timestamp Attack
Gas Consumption
Inappropriate Callback Function
Function Visibility
Implementation Vulnerability
Uninitialized Storage Pointer
Arithmetic Precision
Tx.origin
Fake Deposit
Shadow Variable
Design Vulnerability
Token Issurance
Admin Rights
Inappropriate Proxy Design
Inappropriate Use of Slots
Asset Security
Contract Upgrade/Migration
Code Improvement
Misc

05. Severity level reference

Every issue in this report was assigned a severity level from the following:

Critical severity issues need to be fixed as soon as possible.

High severity issues will probably bring problems and should be fixed.

Medium severity issues could potentially bring problems and should eventually be fixed.

Low severity issues are minor details and warnings that can remain unfixed but would be better
fixed at some point in the future.

Informational is not an issue or risk but a suggestion for code improvement.

FreshCut

Presented by Fairyproof5

af://n174
af://n190

06. Major areas that need attention

Based on the provided souce code the Fairyproof team focused on the possible issues and risks
related to the following functions or areas.

- Integer Overflow/Underflow
We checked all the code sections, which had arithmetic operations and might introduce integer
overflow or underflow if no safe libraries were used. All of them used safe libraries.

We didn't find issues or risks in these functions or areas at the time of writing.

- Access Control
We checked each of the functions that could modify a state, especially those functions that could
only be accessed by "owner".

We didn't find issues or risks in these functions or areas at the time of writing.

- Variable Setting
We checked whether or not the variable settings were proper.

We didn't find issues or risks in these functions or areas at the time of writing.

- State Update
We checked some key state variables which should only be set at initialization.

We didn't find issues or risks in these functions or areas at the time of writing.

- Asset Security
We checked whether or not all the functions that transfer assets were safely handled.

We didn't find issues or risks in these functions or areas at the time of writing.

- Contract Migration/Upgrade
We checked whether or not the contract files introduced issues or risks associated with contract
migration/upgrade.

We found an issue, please refer to "08. Issue description" for more details.

FreshCut

Presented by Fairyproof6

af://n190
af://n194
af://n198
af://n202
af://n206
af://n210
af://n214
af://n218

Index Title Issue/Risk Severity Status

FP-1
Contract

Upgradeable
Contract

Upgrade/Migration
Medium Confirmed

FP-2
Contract Receiving

ETHs
Design Vulnerability Low ✓ Fixed

- Functional Design
We checked whether or not the functions were designed properly.

We found an issue, please refer to "08. Issue description" for more details.

- Miscellaneous
The Fairyproof team didn't find issues or risks in other functions or areas at the time of writing.

07. List of issues by severity

08. Issue descriptions

[FP-1] Contract Upgradeable Medium Confirmed

Issue/Risk: Contract Upgrade/Migration

Description:

FCDToken.sol used hardhat to manage contract upgrades. The owner had the right to upgrade
contracts (see the _authorizeUpgrade function) and the right to pause token transfers. The
owner should operate this with great caution and users needed to trust the owner's operation.
This was less decentralized.

Recommendation:

Consider transferring the owner's right to a multi-sig wallet or a DAO after the contract is
deployed.

Update:

FreshCut

Presented by Fairyproof7

af://n218
af://n222
af://n227
af://n252

The FreshCut team intends for it to be that way as it wants to have the ability to upgrade the
contract in the future, and to be able to pause transactions should anything nefarious arise.

Status:

It has been confirmed by the FreshCut team.

[FP-2] Contract Receiving ETHs Low ✓ Fixed

Issue/Risk: Design Vulnerability

Description:

 Vesting.sol had redundant code including a receive function, therefore the contract could
receive ETHs. When a user mistakenly sent ETHs to the contract, these ETHs would never be
returned.

Recommendation:

Consider removing the receive function.

Update:

The team added a release function to linearly release the ETHs.

Status:

It has been fixed by the FreshCut team.

09. Recommendations to enhance the
overall security

We list some recommendations in this section. They are not mandatory but will enhance the
overall security of the system if they are adopted.

- N/A

Appendix:

Audited Files' SHA-256 Values:

FreshCut

Presented by Fairyproof8

af://n278
af://n282
af://n286

Unit Test Result:

Compiler: solidity: "0.8.9"

 FCDToken.sol: 0x86f0afd717881c46fa8b8df015c5a98b14ce29db3764788d16b7a3a512449a3e

Vesting.sol: 0xbf049abff24bbf1e8759522faf81e06dae8c29249f3dd0d0657727ff1567dd7d

> HardhatEVM: v2.8.4

> network: hardhat

 Freshcut Diamonds contract

 Deployment

Token Supply : 1000000000000000000000000000

 ✓ Should assign the total supply of tokens to the owner
 Token Details

 ✓ has a name
 ✓ has a symbol
 ✓ has 18 decimals
 Transactions

BigNumber { value: "1000000000000000000000000000" }

 ✓ Should transfer tokens between accounts (55ms)
 ✓ Should fail if sender doesn’t have enough tokens (58ms)
 Pauseable Check

 ✓ Should pause the contract
 ✓ Should unpause the contract after its paused (43ms)
 Upgradability Testing

 ✓ Should allow to upgrade (187ms)

 VestingWallet

 Sanity

 ✓ rejects zero address for beneficiary
 ✓ check vesting contract sanity
 Deployment

 ✓ Check 0 balance release from contract (40ms)
 Vesting

 ✓ Should vest after a 1 year time (77ms)
 ✓ Should vest after full time completion (75ms)
 ✓ Should not vest after full vesting complete (74ms)
 ✓ Should not vest to anybody not assigned to (73ms)
 ✓ Should be able to send to the vesting wallet multiple times (83ms)

 VestingWallet

 Sanity

 ✓ rejects zero address for beneficiary
 ✓ check vesting contract sanity
 Deployment

Token Supply : 1000000000000000000000000000

 ✓ Should assign the total supply of tokens to the owner
 ✓ Check funding from transfer
 ✓ Check 0 balance release from contract (46ms)
 Vesting

 ✓ Should not vest before start (65ms)
 ✓ Should vest after a 1 year time (83ms)

FreshCut

Presented by Fairyproof9

Coverage of Unit Test:

Note: the unit test didn't cover FCDToken_TestContractForUpgradability.sol

 ✓ Should vest after full time completion (85ms)
 ✓ Should vest full cycle with 1 year interval (162ms)
 ✓ Should not vest after full vesting complete (98ms)
 ✓ Should not vest to anybody not assigned to (64ms)
 ✓ Should be able to send to the vesting wallet multiple times (77ms)

 29 passing (5s)

FreshCut

Presented by Fairyproof10

	01. Introduction
	— Disclaimer
	— Methodology
	— Structure of the document
	— Documentation
	— Comments from Auditor

	02. About Fairyproof
	03. Major functions of audited code
	04. Coverage of issues
	05. Severity level reference
	06. Major areas that need attention
	- Integer Overflow/Underflow
	- Access Control
	- Variable Setting
	- State Update
	- Asset Security
	- Contract Migration/Upgrade
	- Functional Design
	- Miscellaneous

	07. List of issues by severity
	08. Issue descriptions
	09. Recommendations to enhance the overall security
	- N/A

	Appendix:

