
Hiroshima Dragonfly

Version 1.0.0

Serial No. 2022051600012021

Presented by Fairyproof

May 16, 2022

01. Introduction

This document includes the results of the audit performed by the Fairyproof team on the
Hiroshima Dragonfly project, at the request of the Hiroshima Dragonfly team.

Audit Start Time:

May 13, 2022

Audit End Time:

May 16, 2022

Project Token's Name:

Hiroshima Dragonfly

Audited Code's Github Repository:

https://github.com/iqbalhanif313/hiroshima-dragonfly-nft-sc

Audited Code's Github Commit Number When Audit Started:

74948cef4408728ff455e97a9c072e61babbae57

Audited Code's Github Commit Number When Audit Ended:

5ed58f73a8e33248a8b172bad89eb9d868487632

Audited Source Files:

The calculated SHA-256 values for the audited files when the audit was done are as follows:

The goal of this audit is to review Dragonfly’s solidity implementation for its NFT issuance and
sales functions, study potential security vulnerabilities, its general design and architecture, and
uncover bugs that could compromise the software in production.

We make observations on specific areas of the code that present concrete problems, as well as
general observations that traverse the entire codebase horizontally, which could improve its
quality as a whole.

This audit only applies to the specified code, software or any materials supplied by the Hiroshima
Dragonfly team for specified versions. Whenever the code, software, materials, settings,
environment etc is changed, the comments of this audit will no longer apply.

HDY721.sol :

0x180d83b72338b93e318b81436024d10a62973c9a7bc9c36625ffc7c49ffdcf0c

Marketplace.sol:

0xbb475fc48c784da8516c1d9801e2330e6d1ac7b51a4b53de168792e8b1ec8252

Dragonfly

Presented by Fairyproof1

Fa
ir
yp
ro
of

af://n12
https://github.com/iqbalhanif313/hiroshima-dragonfly-nft-sc
af://n43

— Disclaimer
Note that as of the date of publishing, the contents of this report reflect the current
understanding of known security patterns and state of the art regarding system security. You
agree that your access and/or use, including but not limited to any associated services, products,
protocols, platforms, content, and materials, will be at your sole risk.

The review does not extend to the compiler layer, or any other areas beyond the programming
language, or other programming aspects that could present security risks. If the audited source
files are smart contract files, risks or issues introduced by using data feeds from offchain sources
are not extended by this review either.

Given the size of the project, the findings detailed here are not to be considered exhaustive, and
further testing and audit is recommended after the issues covered are fixed.

To the fullest extent permitted by law, we disclaim all warranties, expressed or implied, in
connection with this report, its content, and the related services and products and your use
thereof, including, without limitation, the implied warranties of merchantability, fitness for a
particular purpose, and non-infringement.

We do not warrant, endorse, guarantee, or assume responsibility for any product or service
advertised or offered by a third party through the product, any open source or third-party
software, code, libraries, materials, or information linked to, called by, referenced by or accessible
through the report, its content, and the related services and products, any hyperlinked websites,
any websites or mobile applications appearing on any advertising, and we will not be a party to or
in any way be responsible for monitoring any transaction between you and any third-party
providers of products or services.

FOR AVOIDANCE OF DOUBT, THE REPORT, ITS CONTENT, ACCESS, AND/OR USAGE THEREOF,
INCLUDING ANY ASSOCIATED SERVICES OR MATERIALS, SHALL NOT BE CONSIDERED OR RELIED
UPON AS ANY FORM OF FINANCIAL, INVESTMENT, TAX, LEGAL, REGULATORY, OR OTHER ADVICE.

— Methodology
The above files' code was studied in detail in order to acquire a clear impression of how the its
specifications were implemented. The codebase was then subject to deep analysis and scrutiny,
resulting in a series of observations. The problems and their potential solutions are discussed in
this document and, whenever possible, we identify common sources for such problems and
comment on them as well.

The Fairyproof auditing process follows a routine series of steps:

1. Code review that includes the following

i. Review of the specifications, sources, and instructions provided to Fairyproof to make sure
we understand the size, scope, and functionality of the project's source code.

ii. Manual review of code, which is the process of reading source code line-by-line in an
attempt to identify potential vulnerabilities.

iii. Comparison to specification, which is the process of checking whether the code does what
the specifications, sources, and instructions provided to Fairyproof describe.

2. Testing and automated analysis that includes the following:

i. Test coverage analysis, which is the process of determining whether the test cases are
actually covering the code and how much code is exercised when we run the test cases.

ii. Symbolic execution, which is analyzing a program to determine what inputs cause each
part of a program to execute.

Dragonfly

Presented by Fairyproof2

Fa
ir
yp
ro
of

af://n43
af://n56

Passed

Serial Number Auditor Audit Time Result

2022051600012021
Fairyproof Security
Team

May 13, 2022 - May 16,
2022

3. Best practices review, which is a review of the source code to improve maintainability,
security, and control based on the established industry and academic practices,
recommendations, and research.

— Structure of the document
This report contains a list of issues and comments on all the above source files. Each issue is
assigned a severity level based on the potential impact of the issue and recommendations to fix it,
if applicable. For ease of navigation, an index by topic and another by severity are both provided
at the beginning of the report.

— Documentation
For this audit, we used the following sources of truth about how the NFT issuance and sales
functions should work:

https://hiroshimadragonflies.com/

These were considered the specification, and when discrepancies arose with the actual code
behavior, we consulted with the Hiroshima Dragonfly team or reported an issue.

— Comments from Auditor

Summary:

The Fairyproof security team used its auto analysis tools and manual work to audit the project.
During the audit, one issue of critical-severity, one issue of high-severity, three issues of medium-
severity, two issues of low-severity and one issue of informational-severity were uncovered. All
the issues have been fixed by the team.

Dragonfly

Presented by Fairyproof3

Fa
ir
yp
ro
of

af://n67
af://n70
https://hiroshimadragonflies.com/
af://n76

02. About Fairyproof

Fairyproof is a leading technology firm in the blockchain industry, providing consulting and
security audits for organizations. Fairyproof has developed industry security standards for
designing and deploying blockchain applications.

03. Major functions of audited code

The audited code mainly implements NFT issuance and sales functions. Token issuance and sales
are executed by the admin.

The Hiroshima Dragonfly team charges fees on NFT sales.

04. Coverage of issues

The issues that the Fairyproof team covered when conducting the audit include but are not
limited to the following ones:

Re-entrancy Attack
Replay Attack
Reordering Attack
Miner's Advantage
Rollback Attack
DDoS Attack
Transaction Ordering Attack
Race Condition
Access Control
Integer Overflow/Underflow
Timestamp Attack
Gas Consumption
Inappropriate Callback Function
Function Visibility
Implementation Vulnerability
Uninitialized Storage Pointer

Dragonfly

Presented by Fairyproof4

Fa
ir
yp
ro
of

af://n83
https://www.fairyproof.com/
af://n95
af://n107

Arithmetic Precision
Tx.origin
Fake Deposit
Shadow Variable
Design Vulnerability
Token Issuance
Admin Rights
Inappropriate Proxy Design
Inappropriate Use of Slots
Asset Security
Contract Upgrade/Migration
Code Improvement
Misc

05. Severity level reference

Every issue in this report was assigned a severity level from the following:

Critical severity issues need to be fixed as soon as possible.

High severity issues will probably bring problems and should be fixed.

Medium severity issues could potentially bring problems and should eventually be fixed.

Low severity issues are minor details and warnings that can remain unfixed but would be better
fixed at some point in the future.

Informational is not an issue or risk but a suggestion for code improvement.

06. Major areas that need attention

Based on the provided source code the Fairyproof team focused on the possible issues and risks
related to the following functions or areas.

Dragonfly

Presented by Fairyproof5

Fa
ir
yp
ro
of

af://n172
af://n188
af://n339

- Integer Overflow/Underflow
We checked all the code sections, which had arithmetic operations and might introduce integer
overflow or underflow if no safe libraries were used. All of them used safe libraries.

We didn't find issues or risks in these functions or areas at the time of writing.

- Access Control
We checked each of the functions that could modify a state, especially those functions that could
only be accessed by "owner".

We found some issues, for more details please refer to FP-2 , FP-3 and FP-7 in "08. Issue
descriptions".

- Token Issuance
We checked whether or not the contract files could mint tokens at will.

We found one issue, for more details please refer to FP-1 in "08. Issue description".

- State Update
We checked some key state variables which should only be set at initialization.

We found issues, for more details please refer to FP-4 , FP-5 and FP-6 in "08. Issue description".

- Asset Security
We checked whether or not all the functions that transfer assets were safely handled.

We didn't find issues or risks in these functions or areas at the time of writing.

- Miscellaneous
We found one issue, for more details please refer to FP-8 in "08. Issue description".

07. List of issues by severity

Dragonfly

Presented by Fairyproof6

Fa
ir
yp
ro
of

af://n339
af://n348
af://n358
af://n364
af://n372
af://n199
af://n204

Index Title Issue/Risk Severity Status

FP-1 Missing Check for Sales Price
Implementation

Vulnerability
Critical

✓
Fixed

FP-2
Missing Access Control for

Price Setting
Access Control High

✓
Fixed

FP-3
Missing Access Control for

Issuance
Access Control Medium

✓
Fixed

FP-4 Repeatable Initialization
Implementation

Vulnerability
Medium

✓
Fixed

FP-5 Missing Check for NFT Status
Implementation

Vulnerability
Medium

✓
Fixed

FP-6
Missing Validation for

Initialization
Implementation

Vulnerability
Low

✓
Fixed

FP-7 Redundant Modifier Access Control Low
✓

Fixed

FP-8
Missing External Access to

Variables
Misc Info

✓
Fixed

08. Issue descriptions

[FP-1] Missing Check for Sales Price Critical ✓ Fixed

Issue/Risk: Implementation Vulnerability

Description:

The Buy function in Marketplace.sol didn't verify whether or not a user's payment amount was
equal to the price. Therefore a user could buy an NFT by paying zero fees

Recommendation:

Consider adding a require(msg.value == price) directive

Update: the Hiroshima Dragonfly team added require(msg.value == price, "msg.value is
not matched with price!"); .

Status:

It has been fixed by the Hiroshima Dragonfly team.

Dragonfly

Presented by Fairyproof7

Fa
ir
yp
ro
of

af://n226

[FP-2] Missing Access Control for Price Setting

High ✓ Fixed

Issue/Risk: Access Control

Description:

In HDY721.sol , any one could call the setPriceNFT function to set an NFT's price. Its desired
behavior was that only the Marketplace contract could call the function.

Recommendation:

Consider adding a variable to record the address of the Marketplace contract. Only that variable
can call the function.

Update:

The Hiroshima Dragonfly team has adopted the recommendation.

Status:

It has been fixed by the Hiroshima Dragonfly team.

[FP-3] Missing Access Control for Issuance Medium

✓ Fixed

Issue/Risk: Access Control

Description:

In HDY721.sol , the mint function didn't validate the caller. Therefore users that had verified
signatures could bypass the Marketplace contract and directly call the mint function. Its desired
behavior was that only the Marketplace contract could call the function.

Recommendation:

Consider adding a variable to record the address of the Marketplace contract and adding a
check to ensure the caller is Marketplace .

Update:

The Hiroshima Dragonfly team has adopted the recommendation.

Status:

It has been fixed by the Hiroshima Dragonfly team.

[FP-4] Repeatable Initialization Medium ✓ Fixed

Issue/Risk: Implementation Vulnerability

Description:

In Marketplace.sol the Init function didn't verify whether or not some states were initialized.
Therefore these states could be initialized repeatedly.

Recommendation:

Dragonfly

Presented by Fairyproof8

Fa
ir
yp
ro
of

Consider adding a require directive to ensure the states are only initialized once.

Update:

The Hiroshima Dragonfly team added a require(!Initialized, "Contract already
initialized!"); directive.

Status:

It has been fixed by the Hiroshima Dragonfly team.

[FP-5] Missing Check for NFT Status Medium ✓ Fixed

Issue/Risk: Implementation Vulnerability

Description:

In Marketplace.sol , the buy function didn't verify whether or not an NFT was for sale.
Therefore a user could buy an NFT that was not listed for sale

Recommendation:

Consider adding a require directive to ensure an NFT is for sale.

Update:

The Hiroshima Dragonfly team added a require(statusNFT[tokenID], "NFT is not
listed!"); directive.

Status:

It has been fixed by the Hiroshima Dragonfly team.

[FP-6] Missing Validation for Initialization Low ✓

Fixed

Issue/Risk: Implementation Vulnerability

Description:

In Marketplace.sol both setRoyaltyFee and updatePlatform should make sure they were
called after initialization was done otherwise the parameters that were initialized might be reset.

Recommendation:

Consider adding a initializer modifier to ensure these functions are called after initialization is
done.

Update:

The Hiroshima Dragonfly team added an initializer modifier.

Status:

It has been fixed by the Hiroshima Dragonfly team.

Dragonfly

Presented by Fairyproof9

Fa
ir
yp
ro
of

[FP-7] Redundant Modifier Low ✓ Fixed

Issue/Risk: Access Control

Description:

updatePlatform had two modifiers onlyOwner and onlyAdmin . These two modifiers had
different access control. They were confusing.

Is this a desired behavior? Consider removing one of them

Recommendation:

Consider removing either of them.

Update:

The Hiroshima Dragonfly team kept onlyAdmin and removed onlyOwner .

Status:

It has been fixed by the Hiroshima Dragonfly team.

[FP-8] Missing External Access to Variables Low

✓ Fixed

Issue/Risk: Misc

Description:

Some state variable were private such as platformAddress and Initialized which users
couldn't read.

Recommendation:

Consider changing them to public

Update:

The Hiroshima Dragonfly team changed them.

Status:

It has been fixed by the Hiroshima Dragonfly team.

09. Recommendations to enhance the
overall security

We list some recommendations in this section. They are not mandatory but will enhance the
overall security of the system if they are adopted.

Dragonfly

Presented by Fairyproof10

Fa
ir
yp
ro
of

af://n239

Consider inheriting HDY721 from ERC721Enumerable to allow users to list their own NFTs.

Update: Hiroshima Dragonfly team replied that if they use ERC721Enumerable it will make the gas
fee expensive, and they didn’t use any function that were inherited from ERC721Enumerable.

Consider adding an event in the updatePlatform function.

Update: Done.

Consider adding a check in the updatePlatform function to ensure newAddress is a non-
zero address.

Update: Done.

Consider using a lower case for all the initial letters of the function names such as changing
Mint to mint .

Update: Done.

Consider adding a require(statusNFT[tokenID],"not selled") directive in the
CancelSell function.

Update: Done.

Both the sell function and the sellWithMint function used the same parameter
signatures : msg.sender, tokenID, price, transactionID . This would cause confusion
and unexpected issues. Consider adding an additional variable to differentiate them and
verifying the signatures with care.

Dragonfly

Presented by Fairyproof11

Fa
ir
yp
ro
of

	01. Introduction
	— Disclaimer
	— Methodology
	— Structure of the document
	— Documentation
	— Comments from Auditor

	02. About Fairyproof
	03. Major functions of audited code
	04. Coverage of issues
	05. Severity level reference
	06. Major areas that need attention
	- Integer Overflow/Underflow
	- Access Control
	- Token Issuance
	- State Update
	- Asset Security
	- Miscellaneous

	07. List of issues by severity
	08. Issue descriptions
	09. Recommendations to enhance the overall security

