
BlockAura Token 3.1

Version 1.0.0

Serial No. 2022100500012015

Presented by Fairyproof

October 5, 2022

01. Introduction

This document includes the results of the audit performed by the Fairyproof team on the
BlockAura Token project.

Audit Start Time:

October 4, 2022

Audit End Time:

October 5, 2022

Audited Code's Github Repository:

https://github.com/blockaura-blockchain/BlockAura-Token-3.1

Audited Code's Github Commit Number When Audit Started:

26bc8ee7e4db355a1e1f026c351c0979f0fe095b

Audited Code's Github Commit Number When Audit Ended:

b56481ac4a0d2426fc440283c4828f1055e306a1

Audited Source Files:

The calculated SHA-256 value for the audited file when the audit was done is as follows:

The source file audited is as follows:

The goal of this audit is to review BlockAura’s solidity implementation for its token issuance
function, study potential security vulnerabilities, its general design and architecture, and uncover
bugs that could compromise the software in production.

We make observations on specific areas of the code that present concrete problems, as well as
general observations that traverse the entire codebase horizontally, which could improve its quality
as a whole.

BlockAura-ETH.sol:

0xe2f56b65b480fb42be1ca457b95f62a2ed63bd5a60da7157d2dd6cad377fd5be

contracts/

└── BlockAura-ETH.sol.sol

0 directories, 1 file

BlockAura Token 3.1

Presented by Fairyproof1

Fa
ir
yp
ro
of

af://n0
https://github.com/blockaura-blockchain/BlockAura-Token-3.1

This audit only applies to the specified code, software or any materials supplied by the BlockAura
team for specified versions. Whenever the code, software, materials, settings, environment etc is
changed, the comments of this audit will no longer apply.

— Disclaimer
Note that as of the date of publishing, the contents of this report reflect the current understanding
of known security patterns and state of the art regarding system security. You agree that your
access and/or use, including but not limited to any associated services, products, protocols,
platforms, content, and materials, will be at your sole risk.

The review does not extend to the compiler layer, or any other areas beyond the programming
language, or other programming aspects that could present security risks. If the audited source
files are smart contract files, risks or issues introduced by using data feeds from offchain sources
are not extended by this review either.

Given the size of the project, the findings detailed here are not to be considered exhaustive, and
further testing and audit is recommended after the issues covered are fixed.

To the fullest extent permitted by law, we disclaim all warranties, expressed or implied, in
connection with this report, its content, and the related services and products and your use
thereof, including, without limitation, the implied warranties of merchantability, fitness for a
particular purpose, and non-infringement.

We do not warrant, endorse, guarantee, or assume responsibility for any product or service
advertised or offered by a third party through the product, any open source or third-party
software, code, libraries, materials, or information linked to, called by, referenced by or accessible
through the report, its content, and the related services and products, any hyperlinked websites,
any websites or mobile applications appearing on any advertising, and we will not be a party to or
in any way be responsible for monitoring any transaction between you and any third-party
providers of products or services.

FOR AVOIDANCE OF DOUBT, THE REPORT, ITS CONTENT, ACCESS, AND/OR USAGE THEREOF,
INCLUDING ANY ASSOCIATED SERVICES OR MATERIALS, SHALL NOT BE CONSIDERED OR RELIED
UPON AS ANY FORM OF FINANCIAL, INVESTMENT, TAX, LEGAL, REGULATORY, OR OTHER ADVICE.

— Methodology
The above files' code was studied in detail in order to acquire a clear impression of how the its
specifications were implemented. The codebase was then subject to deep analysis and scrutiny,
resulting in a series of observations. The problems and their potential solutions are discussed in
this document and, whenever possible, we identify common sources for such problems and
comment on them as well.

The Fairyproof auditing process follows a routine series of steps:

1. Code Review, Including:

Project Diagnosis

Understanding the size, scope and functionality of your project’s source code based on the
specifications, sources, and instructions provided to Fairyproof.

BlockAura Token 3.1

Presented by Fairyproof2

Fa
ir
yp
ro
of

af://n26
af://n34

Serial Number Auditor Audit Time Result

2022100500012015 Fairyproof Security Team Oct 4, 2022 - Oct 5, 2022 Low Risk

Manual Code Review

Reading your source code line-by-line to identify potential vulnerabilities.

Specification Comparison

Determining whether your project’s code successfully and efficiently accomplishes or executes its
functions according to the specifications, sources, and instructions provided to Fairyproof.

2. Testing and Automated Analysis, Including:

Test Coverage Analysis

Determining whether the test cases cover your code and how much of your code is exercised or
executed when test cases are run.

Symbolic Execution

Analyzing a program to determine the specific input that causes different parts of a program to
execute its functions.

 3. Best Practices Review

Reviewing the source code to improve maintainability, security, and control based on the latest
established industry and academic practices, recommendations, and research.

— Structure of the document
This report contains a list of issues and comments on all the above source files. Each issue is
assigned a severity level based on the potential impact of the issue and recommendations to fix it,
if applicable. For ease of navigation, an index by topic and another by severity are both provided at
the beginning of the report.

— Documentation
For this audit, we used the following sources of truth about how the token issuance system should
work:

Contract Source Code

This was considered the specification, and when discrepancies arose with the actual code behavior,
we consulted with the BlockAura team or reported an issue.

— Comments from Auditor

BlockAura Token 3.1

Presented by Fairyproof3

Fa
ir
yp
ro
of

af://n66
af://n69
af://n75

Summary:

The Fairyproof security team used its auto analysis tools and manual work to audit the project.
During the audit, one issue of medium-severity and one issue of low-severity were uncovered. The
BlockAura team fixed one issue of medium-severity , and acknowledged the remaining one issue of
low-severity.

02. About Fairyproof

Fairyproof is a leading technology firm in the blockchain industry, providing consulting and security
audits for organizations. Fairyproof has developed industry security standards for designing and
deploying blockchain applications.

03. Major functions of audited code

The audited code implements an token issuance function and here are the details:

Token Address: 0x591975253e25101f6E6f0383e13E82B7601D8c59 (Ethereum)
Token Standard: ERC-20
Name: BlockAura Token 3.1
Symbol: TBAC
Decimals: 8
Max Supply: 20,000,000
Burn: Yes
Blacklist: Yes
Transfer Can be Paused: Yes

BlockAura Token 3.1

Presented by Fairyproof4

Fa
ir
yp
ro
of

af://n96
https://www.fairyproof.com/
af://n102

Note: The contract provides the function of burning tokens on approval. Tokens held by blacklisted
addresses cannot be transferred.

04. Coverage of issues

The issues that the Fairyproof team covered when conducting the audit include but are not limited
to the following ones:

Re-entrancy Attack
Replay Attack
Reordering Attack
Miner's Advantage
Rollback Attack
DDoS Attack
Injection Attack
Transaction Ordering Attack
Race Condition
Access Control
Integer Overflow/Underflow
Timestamp Attack
Gas Consumption
Inappropriate Callback Function
Function Visibility
Implementation Vulnerability
Uninitialized Storage Pointer
Arithmetic Precision
Tx.origin
Fake Deposit
Shadow Variable
Design Vulnerability
Token Issuance
Admin Rights
Inappropriate Proxy Design
Inappropriate Use of Slots
Asset Security
Contract Upgrade/Migration
Code Improvement
Misc

BlockAura Token 3.1

Presented by Fairyproof5

Fa
ir
yp
ro
of

af://n129
af://n196

05. Severity level reference

Every issue in this report was assigned a severity level from the following:

Critical severity issues need to be fixed as soon as possible.

High severity issues will probably bring problems and should be fixed.

Medium severity issues could potentially bring problems and should eventually be fixed.

Low severity issues are minor details and warnings that can remain unfixed but would be better
fixed at some point in the future.

Informational is not an issue or risk but a suggestion for code improvement.

06. Major areas that need attention

Based on the provided source code the Fairyproof team focused on the possible issues and risks
related to the following functions or areas.

- Function Implementation
We checked whether or not the functions were correctly implemented.

We found some issues, for more details please refer to FP-1 and FP-2 in "08. Issue description".

- Integer Overflow/Underflow
We checked all the code sections, which had arithmetic operations and might introduce integer
overflow or underflow if no safe libraries were used. All of them used safe libraries.

We didn't find issues or risks in these functions or areas at the time of writing.

- Access Control

BlockAura Token 3.1

Presented by Fairyproof6

Fa
ir
yp
ro
of

af://n196
af://n212
af://n216
af://n220
af://n224

Index Title Issue/Risk Severity Status

FP-1 Transfer Can be Paused
Design

Vulnerability
Low Acknowledged

FP-2
Could Transfer Tokens

From Blacklisted
Addresses

Implementation
Vulnerability

Medium ✓ Fixed

We checked each of the functions that could modify a state, especially those functions that could
only be accessed by "owner".

We didn't find issues or risks in these functions or areas at the time of writing.

- Token Issuance & Exchange
We checked whether or not the contract files could mint tokens at will.

We didn't find issues or risks in these functions or areas at the time of writing.

- State Update
We checked some key state variables which should only be set at initialization.

We didn't find issues or risks in these functions or areas at the time of writing.

- Asset Security
We checked whether or not all the functions that transfer assets were safely handled.

We didn't find issues or risks in these functions or areas at the time of writing.

- Miscellaneous
We didn't find issues or risks in these functions or areas at the time of writing.

07. List of issues by severity

BlockAura Token 3.1

Presented by Fairyproof7

Fa
ir
yp
ro
of

af://n228
af://n232
af://n236
af://n240
af://n245

08. Issue descriptions

[FP-1] Transfer Can be Paused Low Acknowledged

Issue/Risk: Design Vulnerability

description:

The contract has a pause function. When paused, users can not transfer tokens, which will have a
certain impact on user usage.

Recommendation:

Consider pausing transfers in very special cases.

Update/Status:

The BlockAura team has acknowledged this. Pausable.sol implements an emergency stop
mechanism.

[FP-2] Could Transfer Tokens From Blacklisted
Addresses Medium ✓ Fixed

Issue/Risk: Implementation Vulnerability

Description:

When a user was added to the blacklist, he/she could approve other users to spend his/her tokens,
so the approved users could still transfer his/her tokens by calling the transferFrom function

Recommendation:

Consider adding a conditional check in the transferFrom function as follows:

Update/Status:

It has been fixed by the BlockAura team.

09. Recommendations to enhance the
overall security

require(!isBlackListed[from],"From is in blacklist");

BlockAura Token 3.1

Presented by Fairyproof8

Fa
ir
yp
ro
of

af://n270
af://n293

We list some recommendations in this section. They are not mandatory but will enhance the
overall security of the system if they are adopted.

Consider managing the admin's access control with great care and trasferring it to a multi-sig
wallet or DAO when necessary.

10. Appendices

10.1 Unit Test File

const { expect } = require("chai");

const { ethers } = require("hardhat");

describe("BlockauraToken", function () {

 let instance;

 let owner,user1,user2,users;

 const init_supply = ethers.utils.parseUnits("2000000",6);

 const max_supply = ethers.utils.parseUnits("2000000000",6);

 before(async () => {

 [owner,user1,user2,...users] = await ethers.getSigners();

 });

 beforeEach(async() => {

 const BlockauraToken = await ethers.getContractFactory("BlockauraToken");

 instance = await

BlockauraToken.deploy("BlockauraToken","BKT",6,init_supply,);

 });

 describe("Meta test", function() {

 it("name | symbol | decimals test", async () => {

 expect(await instance.name()).to.be.equal("BlockauraToken");

 expect(await instance.symbol()).to.be.equal("BKT");

 expect(await instance.decimals()).to.be.equal(6);

 });

 });

 describe("Init status test", function() {

 it("init_supply test", async () => {

 expect(await instance.totalSupply()).to.be.equal(init_supply);

 expect(await

instance.balanceOf(owner.address)).to.be.equal(init_supply);

 });

 it("init pause test", async () => {

 expect(await instance.paused()).to.be.false;

 });

BlockAura Token 3.1

Presented by Fairyproof9

Fa
ir
yp
ro
of

af://n303
af://n305

 });

 describe("approve and allowance test", function() {

 it("approve should change allowance", async () => {

 expect(await

instance.allowance(user1.address,user2.address)).to.be.equal(0);

 await

expect(instance.connect(user1).approve(user2.address,10000)).to.be.emit(

 instance,"Approval"

).withArgs(user1.address,user2.address,10000);

 expect(await

instance.allowance(user1.address,user2.address)).to.be.equal(10000);

 });

 it("increaseAllowance/decreaseAllowance should change allowance", async ()

=> {

 expect(await

instance.allowance(user1.address,user2.address)).to.be.equal(0);

 await

expect(instance.connect(user1).increaseAllowance(user2.address,10000)).to.be.emit(

 instance,"Approval"

).withArgs(user1.address,user2.address,10000);

 expect(await

instance.allowance(user1.address,user2.address)).to.be.equal(10000);

 await

expect(instance.connect(user1).decreaseAllowance(user2.address,1000)).to.be.emit(

 instance,"Approval"

).withArgs(user1.address,user2.address,9000);

 expect(await

instance.allowance(user1.address,user2.address)).to.be.equal(9000);

 });

 });

 describe("transferFrom and transfer test", function() {

 it("transfer should change balance", async () => {

 await expect(instance.transfer(user1.address,1000)).to.be.emit(

 instance,"Transfer"

).withArgs(owner.address,user1.address,1000);

 expect(await

instance.balanceOf(owner.address)).to.be.equal(init_supply.sub(1000));

 expect(await instance.balanceOf(user1.address)).to.be.equal(1000);

 expect(await instance.totalSupply()).to.be.equal(init_supply);

 });

 it("transfer to self shouldn't change balance", async () => {

 await instance.transfer(owner.address,1000);

 expect(await

instance.balanceOf(owner.address)).to.be.equal(init_supply);

 expect(await instance.totalSupply()).to.be.equal(init_supply);

 });

 it("transfer should failed while sender has insufficient tokens", async ()

=> {

BlockAura Token 3.1

Presented by Fairyproof10

Fa
ir
yp
ro
of

 await

expect(instance.connect(user1).transfer(user2.address,10)).to.be.reverted;

 });

 it("transferFrom without approval should be failed", async () => {

 await

expect(instance.connect(user1).transferFrom(owner.address,user2.address,10)).to.be

.reverted;

 });

 it("transferFrom should change balance and allowance", async () => {

 await instance.approve(user1.address, 10000);

 await

expect(instance.connect(user1).transferFrom(owner.address,user2.address,3000)).to.

be.emit(

 instance,"Transfer"

).withArgs(owner.address,user2.address,3000);

 expect(await

instance.balanceOf(owner.address)).to.be.equal(init_supply.sub(3000));

 expect(await instance.balanceOf(user1.address)).to.be.equal(0);

 expect(await instance.balanceOf(user2.address)).to.be.equal(3000);

 expect(await instance.totalSupply()).to.be.equal(init_supply);

 expect(await

instance.allowance(owner.address,user1.address)).to.be.equal(7000);

 });

 });

 describe("minter and burn", async () => {

 it("mint beyond supply or while paused should be failed", async () => {

 let value = max_supply.sub(init_supply).add(100);

 await

expect(instance.mint(user1.address,value)).to.be.revertedWith("value exceeds

beyond maximum supply");

 await expect(instance.connect(user1).mint(user1.address,

100)).to.be.revertedWith("you are not minter");

 await instance.pause();

 await expect(instance.mint(user1.address,

100)).to.be.revertedWith("Can not mint contract is paused");

 });

 it("mint should change state and emit event ", async () => {

 await expect(instance.mint(user1.address,10000)).to.be.emit(

 instance,"Transfer"

).withArgs(ethers.constants.AddressZero,user1.address,10000);

 expect(await instance.balanceOf(user1.address)).to.be.equal(10000);

 expect(await

instance.totalSupply()).to.be.equal(init_supply.add(10000));

 });

 it("BurnFrom should change state and emit event", async () => {

 await instance.mint(user1.address,10000);

 await instance.connect(user1).approve(owner.address,10000);

BlockAura Token 3.1

Presented by Fairyproof11

Fa
ir
yp
ro
of

 expect(await instance.balanceOf(user1.address)).to.be.equal(10000);

 expect(await

instance.allowance(user1.address,owner.address)).to.be.equal(10000);

 await expect(instance._burnFrom(user1.address,100)).to.be.emit(

 instance,"Transfer"

).withArgs(user1.address,ethers.constants.AddressZero,100);

 expect(await instance.balanceOf(user1.address)).to.be.equal(9900);

 expect(await

instance.allowance(user1.address,owner.address)).to.be.equal(9900);

 await expect(instance._burnFrom(user1.address,10000)).to.be.reverted;

 });

 });

 describe("BlackList test", function() {

 it("only owner can add and remove blacklist", async () => {

 await

expect(instance.connect(user1).addBlackList(user2.address)).to.be.revertedWith("Ow

nable: caller is not the owner");

 await

expect(instance.connect(user1).removeBlackList(user2.address)).to.be.revertedWith(

"Ownable: caller is not the owner");

 });

 it("add/remove blacklist should change state", async () => {

 expect(await instance.isBlackListed(user1.address)).to.be.false;

 expect(await instance.getBlackListStatus(user1.address)).to.be.false;

 await instance.addBlackList(user1.address);

 expect(await instance.isBlackListed(user1.address)).to.be.true;

 expect(await instance.getBlackListStatus(user1.address)).to.be.true;

 await instance.removeBlackList(user1.address);

 expect(await instance.isBlackListed(user1.address)).to.be.false;

 expect(await instance.getBlackListStatus(user1.address)).to.be.false;

 });

 });

 describe("transfer with isBlackListed or Pausable test", function() {

 it("transfer should be failed while paused", async () => {

 await expect(instance.pause()).to.be.emit(

 instance,"Paused"

).withArgs(owner.address);

 await expect(instance.transfer(user1.address,100)).to.be.reverted;

 await instance.unpause();

 await instance.transfer(user1.address,100);

 });

 it("transferFrom should be failed while paused", async () => {

 await instance.approve(user1.address,10000)

 await expect(instance.pause()).to.be.emit(

 instance,"Paused"

).withArgs(owner.address);

 await

expect(instance.connect(user1).transferFrom(owner.address,user1.address,100)).to.b

e.revertedWith("Can not mint contract is paused");

 await instance.unpause();

 instance.connect(user1).transferFrom(owner.address,user1.address,100);

 });

BlockAura Token 3.1

Presented by Fairyproof12

Fa
ir
yp
ro
of

 it("transfer should be failed while in blacklist", async () => {

 await instance.mint(user1.address,100);

 await instance.addBlackList(user1.address);

 await

expect(instance.connect(user1).transfer(user2.address,20)).to.be.reverted;

 await instance.removeBlackList(user1.address);

 await instance.connect(user1).transfer(user2.address,20);

 expect(await instance.balanceOf(user1.address)).to.be.equal(80);

 expect(await instance.balanceOf(user2.address)).to.be.equal(20);

 });

 // it("blacklist can not call transferFrom", async ()=> {

 // await instance.approve(user1.address,10000);

 // await instance.addBlackList(user1.address);

 // await

expect(instance.connect(user1).transferFrom(owner.address,user2.address,100)).to.b

e.reverted;

 // });

 it("transferFrom should be failed while from in blacklist", async () => {

 await instance.approve(user1.address,10000)

 await instance.addBlackList(owner.address);

 await

expect(instance.connect(user1).transferFrom(owner.address,user1.address,100)).to.b

e.revertedWith("From is in blacklist");

 await instance.removeBlackList(owner.address);

 await

instance.connect(user1).transferFrom(owner.address,user1.address,100);

 expect(await instance.balanceOf(user1.address)).to.be.equal(100);

 });

 it("_burnFrom should change state", async () => {

 await instance.transfer(user1.address,100);

 expect(await instance.balanceOf(user1.address)).to.be.equal(100);

 await expect(instance._burnFrom(user1.address,20)).to.be.reverted;

 await instance.connect(user1).approve(owner.address,10000);

 expect(await

instance.allowance(user1.address,owner.address)).to.be.equal(10000);

 await instance._burnFrom(user1.address,20);

 expect(await

instance.allowance(user1.address,owner.address)).to.be.equal(9980);

 expect(await instance.totalSupply()).to.be.equal(init_supply.sub(20));

 expect(await instance.balanceOf(user1.address)).to.be.equal(80);

 });

 });

});

BlockAura Token 3.1

Presented by Fairyproof13

Fa
ir
yp
ro
of

Output:

10.2 External Functional Checkpoints

File:BlockAura-ETH.sol

(An empty field in the table means it is not required or applicable)

contract: BlockauraToken is ERC20Pausable, ERC20Detailed

 BlockauraToken

 Meta test

 ✔ name | symbol | decimals test (42ms)
 Init status test

 ✔ init_supply test
 ✔ init pause test
 approve and allowance test

 ✔ approve should change allowance
 ✔ increaseAllowance/decreaseAllowance should change allowance (49ms)
 transferFrom and transfer test

 ✔ transfer should change balance (40ms)
 ✔ transfer to self shouldn't change balance
 ✔ transfer should failed while sender has insufficient tokens (44ms)
 ✔ transferFrom without approval should be failed
 ✔ transferFrom should change balance and allowance (50ms)
 minter and burn

 ✔ mint beyond supply or while paused should be failed (77ms)
 ✔ mint should change state and emit event
 ✔ BurnFrom should change state and emit event (62ms)
 BlackList test

 ✔ only owner can add and remove blacklist
 ✔ add/remove blacklist should change state (46ms)
 transfer with isBlackListed or Pausable test

 ✔ transfer should be failed while paused (49ms)
 ✔ transferFrom should be failed while paused (45ms)
 ✔ transfer should be failed while in blacklist (59ms)
 ✔ transferFrom should be failed while from in blacklist (54ms)
 ✔ _burnFrom should change state (61ms)

 20 passing (3s)

BlockAura Token 3.1

Presented by Fairyproof14

Fa
ir
yp
ro
of

af://n311
af://n312

Index Function Visibility
Permission
Check

Re-
entrancy
Check

Injection
Check

Unit
Test

Notes

1 name() public Passed

2 symbol() public Passed

3 decimals() public Passed

4 transfer(address,uint256) public Passed whenNotPaused

5 transferFrom(address,address,uint256) public Passed whenNotPaused

6 approve(address,uint256) public Passed whenNotPaused

7 increaseAllowance(address,uint) public Passed whenNotPaused

8 decreaseAllowance(address,uint) public Passed whenNotPaused

9 totalSupply() public Passed

10 balanceOf(address) public Passed

11 allowance(address,address) public Passed

12 mint(address,uint256) public onlyMinter Passed whenNotPaused

13 _burnFrom(address,uint256) public Passed NeedApproval,whenNotPaused

14 paused() public Passed View

15 pause() public onlyPauser Passed whenNotPaused

16 unpause() public onlyPauser Passed whenPaused

17 addBlackList public onlyOwner Passed

18 removeBlackList public onlyOwner Passed

19 getBlackListStatus public Passed View

20 getOwner public redundant,View

BlockAura Token 3.1

Presented by Fairyproof15

Fa
ir
yp
ro
of

	01. Introduction
	— Disclaimer
	— Methodology
	— Structure of the document
	— Documentation
	— Comments from Auditor

	02. About Fairyproof
	03. Major functions of audited code
	04. Coverage of issues
	05. Severity level reference
	06. Major areas that need attention
	- Function Implementation
	- Integer Overflow/Underflow
	- Access Control
	- Token Issuance & Exchange
	- State Update
	- Asset Security
	- Miscellaneous

	07. List of issues by severity
	08. Issue descriptions
	09. Recommendations to enhance the overall security
	10. Appendices
	10.1 Unit Test File
	10.2 External Functional Checkpoints
	File:BlockAura-ETH.sol

