
BlockAura Token

Version 1.0.0

Serial No. 2022091200012021

Presented by Fairyproof

September 12, 2022

01. Introduction

This document includes the results of the audit performed by the Fairyproof team on the
BlockAura Token project.

Audit Start Time:

September 5, 2022

Audit End Time:

September 10, 2022

Audited Code's Github Repository:

https://github.com/blockaura-blockchain/BlockAura-Token-2.1

Audited Code's Github Commit Number When Audit Started:

88309d4d3c59ad6e00cf55c2adf32d7fe569fd4d

Audited Code's Github Commit Number When Audit Ended:

2505e4e6fef8cd9b9eafd51f9a0980d6964ed8a4

Audited Source Files:

The calculated SHA-256 value for the audited file when the audit was done is as follows:

The source file audited is as follows:

The goal of this audit is to review BlockAura’s solidity implementation for its token issuance
function, study potential security vulnerabilities, its general design and architecture, and uncover
bugs that could compromise the software in production.

We make observations on specific areas of the code that present concrete problems, as well as
general observations that traverse the entire codebase horizontally, which could improve its quality
as a whole.

BlockAura-ETH.sol:

0xa32e7ef43381e938e1a13d9ab0bc162e0bad2a69b9ab09cffd11e7bc36b9a369

contracts/

└── BlockAura-ETH.sol.sol

0 directories, 1 file

BlockAura Token

Presented by Fairyproof1

Fa
ir
yp
ro
of

af://n0
https://github.com/blockaura-blockchain/BlockAura-Token-2.1

This audit only applies to the specified code, software or any materials supplied by the BlockAura
team for specified versions. Whenever the code, software, materials, settings, environment etc is
changed, the comments of this audit will no longer apply.

— Disclaimer
Note that as of the date of publishing, the contents of this report reflect the current understanding
of known security patterns and state of the art regarding system security. You agree that your
access and/or use, including but not limited to any associated services, products, protocols,
platforms, content, and materials, will be at your sole risk.

The review does not extend to the compiler layer, or any other areas beyond the programming
language, or other programming aspects that could present security risks. If the audited source
files are smart contract files, risks or issues introduced by using data feeds from offchain sources
are not extended by this review either.

Given the size of the project, the findings detailed here are not to be considered exhaustive, and
further testing and audit is recommended after the issues covered are fixed.

To the fullest extent permitted by law, we disclaim all warranties, expressed or implied, in
connection with this report, its content, and the related services and products and your use
thereof, including, without limitation, the implied warranties of merchantability, fitness for a
particular purpose, and non-infringement.

We do not warrant, endorse, guarantee, or assume responsibility for any product or service
advertised or offered by a third party through the product, any open source or third-party
software, code, libraries, materials, or information linked to, called by, referenced by or accessible
through the report, its content, and the related services and products, any hyperlinked websites,
any websites or mobile applications appearing on any advertising, and we will not be a party to or
in any way be responsible for monitoring any transaction between you and any third-party
providers of products or services.

FOR AVOIDANCE OF DOUBT, THE REPORT, ITS CONTENT, ACCESS, AND/OR USAGE THEREOF,
INCLUDING ANY ASSOCIATED SERVICES OR MATERIALS, SHALL NOT BE CONSIDERED OR RELIED
UPON AS ANY FORM OF FINANCIAL, INVESTMENT, TAX, LEGAL, REGULATORY, OR OTHER ADVICE.

— Methodology
The above files' code was studied in detail in order to acquire a clear impression of how the its
specifications were implemented. The codebase was then subject to deep analysis and scrutiny,
resulting in a series of observations. The problems and their potential solutions are discussed in
this document and, whenever possible, we identify common sources for such problems and
comment on them as well.

The Fairyproof auditing process follows a routine series of steps:

1. Code Review, Including:

Project Diagnosis

Understanding the size, scope and functionality of your project’s source code based on the
specifications, sources, and instructions provided to Fairyproof.

BlockAura Token

Presented by Fairyproof2

Fa
ir
yp
ro
of

af://n26
af://n34

Serial Number Auditor Audit Time Result

2022091200012021
Fairyproof Security
Team

Sep 5, 2022 - Sep 10,
2022

Low Risk

Manual Code Review

Reading your source code line-by-line to identify potential vulnerabilities.

Specification Comparison

Determining whether your project’s code successfully and efficiently accomplishes or executes its
functions according to the specifications, sources, and instructions provided to Fairyproof.

2. Testing and Automated Analysis, Including:

Test Coverage Analysis

Determining whether the test cases cover your code and how much of your code is exercised or
executed when test cases are run.

Symbolic Execution

Analyzing a program to determine the specific input that causes different parts of a program to
execute its functions.

 3. Best Practices Review

Reviewing the source code to improve maintainability, security, and control based on the latest
established industry and academic practices, recommendations, and research.

— Structure of the document
This report contains a list of issues and comments on all the above source files. Each issue is
assigned a severity level based on the potential impact of the issue and recommendations to fix it,
if applicable. For ease of navigation, an index by topic and another by severity are both provided at
the beginning of the report.

— Documentation
For this audit, we used the following sources of truth about how the token issuance system should
work:

Contract Source Code

This was considered the specification, and when discrepancies arose with the actual code behavior,
we consulted with the BlockAura team or reported an issue.

— Comments from Auditor

BlockAura Token

Presented by Fairyproof3

Fa
ir
yp
ro
of

af://n66
af://n69
af://n75

Summary:

The Fairyproof security team used its auto analysis tools and manual work to audit the project.
During the audit, four issues of low-severity and two issues of informational-severity were
uncovered. The BlockAura team fixed three issues of low-severity and two issues of informational-
severity, and acknowledged the remaining one issues of low-severity.

02. About Fairyproof

Fairyproof is a leading technology firm in the blockchain industry, providing consulting and security
audits for organizations. Fairyproof has developed industry security standards for designing and
deploying blockchain applications.

03. Major functions of audited code

The audited code implements an token issuance function and here are the details:

Token Standard: ERC-20
Blockchain: Ethereum
Address: 0x85800a01809B9a778c78d5Ea70bDddDb166DA65C
Name: BlockAura Token 3.0
Symbol: TBAC
Decimals: 8
Total Supply: 20,000,000
Burn: No
Transfer Pausable: Yes

BlockAura Token

Presented by Fairyproof4

Fa
ir
yp
ro
of

af://n95
https://www.fairyproof.com/
af://n101

04. Coverage of issues

The issues that the Fairyproof team covered when conducting the audit include but are not limited
to the following ones:

Re-entrancy Attack
Replay Attack
Reordering Attack
Miner's Advantage
Rollback Attack
DDoS Attack
Injection Attack
Transaction Ordering Attack
Race Condition
Access Control
Integer Overflow/Underflow
Timestamp Attack
Gas Consumption
Inappropriate Callback Function
Function Visibility
Implementation Vulnerability
Uninitialized Storage Pointer
Arithmetic Precision
Tx.origin
Fake Deposit
Shadow Variable
Design Vulnerability
Token Issuance
Admin Rights
Inappropriate Proxy Design
Inappropriate Use of Slots
Asset Security
Contract Upgrade/Migration
Code Improvement
Misc

05. Severity level reference

BlockAura Token

Presented by Fairyproof5

Fa
ir
yp
ro
of

af://n122
af://n189

Every issue in this report was assigned a severity level from the following:

Critical severity issues need to be fixed as soon as possible.

High severity issues will probably bring problems and should be fixed.

Medium severity issues could potentially bring problems and should eventually be fixed.

Low severity issues are minor details and warnings that can remain unfixed but would be better
fixed at some point in the future.

Informational is not an issue or risk but a suggestion for code improvement.

06. Major areas that need attention

Based on the provided source code the Fairyproof team focused on the possible issues and risks
related to the following functions or areas.

- Function Implementation
We checked whether or not the functions were correctly implemented.

We found some issues, for more details please refer to FP-1 and FP-2 in "08. Issue description".

- Integer Overflow/Underflow
We checked all the code sections, which had arithmetic operations and might introduce integer
overflow or underflow if no safe libraries were used. All of them used safe libraries.

We didn't find issues or risks in these functions or areas at the time of writing.

- Access Control
We checked each of the functions that could modify a state, especially those functions that could
only be accessed by "owner".

We found one issue, for more details please refer to FP-3 in "08. Issue description".

BlockAura Token

Presented by Fairyproof6

Fa
ir
yp
ro
of

af://n205
af://n209
af://n213
af://n217

- Token Issuance & Exchange
We checked whether or not the contract files could mint tokens at will.

We didn't find issues or risks in these functions or areas at the time of writing.

- State Update
We checked some key state variables which should only be set at initialization.

We didn't find issues or risks in these functions or areas at the time of writing.

- Asset Security
We checked whether or not all the functions that transfer assets were safely handled.

We didn't find issues or risks in these functions or areas at the time of writing.

- Miscellaneous
We found some issues, for more details please refer to FP-4, FP-5 and FP-6 in "08. Issue
description".

07. List of issues by severity

BlockAura Token

Presented by Fairyproof7

Fa
ir
yp
ro
of

af://n221
af://n225
af://n229
af://n233
af://n238

Index Title Issue/Risk Severity Status

FP-1 Transfer Can be Paused
Design

Vulnerability
Low Acknowledged

FP-2
Can Mint Token while

Paused
Design

Vulnerability
Low ✓ Fixed

FP-3 Inappropriate Role Control
Design

Vulnerability
Low ✓ Fixed

FP-4
Better Use Ownable

Contract
Design

Vulnerability
Low ✓ Fixed

FP-5
Unnecessary Function

Visibility
Design

Vulnerability
Info ✓ Fixed

FP-6 Missing Prompt Messages
Code

Improvement
Info ✓ Fixed

08. Issue descriptions

[FP-1] Transfer Can be Paused Low Acknowledged

Issue/Risk: Design Vulnerability

description:

The contract has a pause function. When paused, users can not transfer tokens, which will have a
certain impact on user usage.

Recommendation:

Consider pausing transfers in very special cases.

Update/Status:

The BlockAura team has acknowledged this. Pausable.sol implements an emergency stop
mechanism.

[FP-2] Can Mint Token While Paused Low ✓ Fixed

Issue/Risk: Design Vulnerability

Description:

BlockAura Token

Presented by Fairyproof8

Fa
ir
yp
ro
of

af://n287

When paused, transer and approve were prohibited, but mint and _burnFrom were still

allowed. This is an inconsistent in design.

Recommendation:

Consider adding a modifier whenNotPaused on functions mint and _burnFrom .

Update/Status:

It has been fixed by the BlockAura team.

[FP-3] Inappropriate Role Control Low ✓ Fixed

Issue/Risk: Design Vulnerability

Description:

In the implementation, the executing minter can add or remove other minters. Typically, a role

with higher privileges is used to perform such operations.

The Pauser had this issue as well.

Recommendation:

Consider using owner to add or remove minter or pauser .

Update/Status:

It has been fixed by the BlockAura team.

[FP-4] Better Use Ownable Contract Low ✓ Fixed

Issue/Risk: Design Vulnerability

Description:

Contract MinterRole inherited Ownable , but the onlyOwner was unused.

Recommendation:

Consider using owner to add or remove minter or pauser .

Update/Status:

It has been fixed by the BlockAura team.

[FP-5] Unnecessary Function Visibility Info ✓ Fixed

Issue/Risk: Design Vulnerability

Description:

The name and comments of function _burnFrom indicate that it was an internal function, yet it

was implemented as a public function.

BlockAura Token

Presented by Fairyproof9

Fa
ir
yp
ro
of

Recommendation:

Consider not making burn external unless it is really necessary.

Update/Status:

It has been fixed by the BlockAura team.

[FP-6] Missing Prompt Messages Info ✓ Fixed

Issue/Risk: Code Improvement

Description:

It is better to add a prompt message for some require statements, which is convenient for

checking the cause when an error occurs.

For example , change require(isMinter(msg.sender)); to require(isMinter(msg.sender),

"not minter");

Recommendation:

Consider adding a prompt message for each of the necessary require statements.

Update/Status:

It has been fixed by the BlockAura team.

09. Recommendations to enhance the
overall security

We list some recommendations in this section. They are not mandatory but will enhance the
overall security of the system if they are adopted.

Consider managing the admin's access control with great care and trasferring it to a multi-sig
wallet or DAO when necessary.

10. Appendices

BlockAura Token

Presented by Fairyproof10

Fa
ir
yp
ro
of

af://n347
af://n357
af://n359

10.1 Unit Test File

const { expect } = require("chai");

const { ethers } = require("hardhat");

describe("BlockauraToken", function () {

 let instance;

 let owner,user1,user2,users;

 const max_supply = ethers.utils.parseUnits("2000000000",6);

 const init_supply = ethers.utils.parseUnits("1000000000",6);

 before(async () => {

 [owner,user1,user2,...users] = await ethers.getSigners();

 });

 beforeEach(async() => {

 const BlockauraToken = await ethers.getContractFactory("BlockauraToken");

 instance = await

BlockauraToken.deploy("BlockauraToken","BAT",6,init_supply);

 });

 describe("Meta test", function() {

 it("name | symbol | decimals test", async () => {

 expect(await instance.name()).to.be.equal("BlockauraToken");

 expect(await instance.symbol()).to.be.equal("BAT");

 expect(await instance.decimals()).to.be.equal(6);

 });

 });

 describe("Init status test", function() {

 it("init_supply test", async () => {

 expect(await instance.totalSupply()).to.be.equal(init_supply);

 expect(await

instance.balanceOf(owner.address)).to.be.equal(init_supply);

 });

 });

 describe("approve and allowance test", function() {

 it("approve should change allowance", async () => {

 expect(await

instance.allowance(user1.address,user2.address)).to.be.equal(0);

 await

expect(instance.connect(user1).approve(user2.address,10000)).to.be.emit(

 instance,"Approval"

).withArgs(user1.address,user2.address,10000);

 expect(await

instance.allowance(user1.address,user2.address)).to.be.equal(10000);

 });

 it("increaseAllowance and decreaseAllowance should change allowance",

async () => {

 expect(await

instance.allowance(user1.address,user2.address)).to.be.equal(0);

 await

expect(instance.connect(user1).increaseAllowance(user2.address,10000)).to.be.emit(

BlockAura Token

Presented by Fairyproof11

Fa
ir
yp
ro
of

af://n359

 instance,"Approval"

).withArgs(user1.address,user2.address,10000);

 expect(await

instance.allowance(user1.address,user2.address)).to.be.equal(10000);

 await

expect(instance.connect(user1).decreaseAllowance(user2.address,4000)).to.be.emit(

 instance,"Approval"

).withArgs(user1.address,user2.address,6000);

 expect(await

instance.allowance(user1.address,user2.address)).to.be.equal(6000);

 });

 it("user can approve self", async () => {

 await instance.approve(owner.address,10000);

 expect(await

instance.allowance(owner.address,owner.address)).to.be.equal(10000);

 });

 });

 describe("transferFrom and transfer test", function() {

 it("transfer should change balance", async () => {

 await expect(instance.transfer(user1.address,1000)).to.be.emit(

 instance,"Transfer"

).withArgs(owner.address,user1.address,1000);

 expect(await

instance.balanceOf(owner.address)).to.be.equal(init_supply.sub(1000));

 expect(await instance.balanceOf(user1.address)).to.be.equal(1000);

 expect(await instance.totalSupply()).to.be.equal(init_supply);

 });

 it("transfer to self shouldn't change balance", async () => {

 await instance.transfer(owner.address,1000);

 expect(await

instance.balanceOf(owner.address)).to.be.equal(init_supply);

 expect(await instance.totalSupply()).to.be.equal(init_supply);

 });

 it("transfer should failed while sender has insufficient tokens", async ()

=> {

 await

expect(instance.connect(user1).transfer(user2.address,10)).to.be.reverted;

 });

 it("transferFrom without approval should be failed", async () => {

 await

expect(instance.connect(user1).transferFrom(owner.address,user2.address,10)).to.be

.reverted;

 });

 it("transferFrom should change balance and allowance", async () => {

 await instance.approve(user1.address, 10000);

 await

expect(instance.connect(user1).transferFrom(owner.address,user2.address,3000)).to.

be.emit(

 instance,"Transfer"

BlockAura Token

Presented by Fairyproof12

Fa
ir
yp
ro
of

).withArgs(owner.address,user2.address,3000);

 expect(await

instance.balanceOf(owner.address)).to.be.equal(init_supply.sub(3000));

 expect(await instance.balanceOf(user1.address)).to.be.equal(0);

 expect(await instance.balanceOf(user2.address)).to.be.equal(3000);

 expect(await instance.totalSupply()).to.be.equal(init_supply);

 expect(await

instance.allowance(owner.address,user1.address)).to.be.equal(7000);

 });

 });

 describe("Role and Pause test", function() {

 it("Only owner can add and remove minter", async () => {

 expect(await instance.isMinter(owner.address)).to.be.true;

 expect(await instance.isMinter(user1.address)).to.be.false;

 expect(await instance.isMinter(user2.address)).to.be.false;

 await

expect(instance.connect(user1).addMinter(user2.address)).to.be.reverted;

 await instance.addMinter(user2.address);

 expect(await instance.isMinter(user2.address)).to.be.true;

 await

expect(instance.connect(user2).removeMinter(owner.address)).to.be.reverted;

 await instance.removeMinter(user2.address);

 expect(await instance.isMinter(user2.address)).to.be.false;

 });

 it("Minter can remove self", async () => {

 await instance.addMinter(user2.address);

 await instance.renounceMinter();

 await instance.connect(user2).renounceMinter();

 expect(await instance.isMinter(owner.address)).to.be.false;

 expect(await instance.isMinter(user2.address)).to.be.false;

 });

 it("Only owner can add and remove a pauser", async () => {

 expect(await instance.isPauser(owner.address)).to.be.true;

 expect(await instance.isPauser(user1.address)).to.be.false;

 expect(await instance.isPauser(user2.address)).to.be.false;

 await

expect(instance.connect(user1).addPauser(user2.address)).to.be.reverted;

 await instance.addPauser(user2.address);

 expect(await instance.isPauser(user2.address)).to.be.true;

 await

expect(instance.connect(user1).addPauser(user2.address)).to.be.reverted;

 });

 it("Pauser can renounce self", async () => {

 await instance.addPauser(user2.address);

 await instance.renouncePauser();

 await instance.connect(user2).renouncePauser();

 expect(await instance.isPauser(owner.address)).to.be.false;

 expect(await instance.isPauser(user2.address)).to.be.false;

 });

 it("only pauser can pause/unpause", async () => {

BlockAura Token

Presented by Fairyproof13

Fa
ir
yp
ro
of

 expect(await instance.paused()).to.be.false;

 await expect(instance.connect(user1).pause()).to.be.reverted;

 await instance.pause();

 expect(await instance.paused()).to.be.true;

 await expect(instance.connect(user1).unpause()).to.be.reverted;

 });

 it("pause/unpause can emit event", async () => {

 await expect(instance.pause()).to.be.emit(

 instance,"Paused"

).withArgs(owner.address);

 expect(await instance.paused()).to.be.true;

 await expect(instance.unpause()).to.be.emit(

 instance,"Unpaused"

).withArgs(owner.address);

 expect(await instance.paused()).to.be.false;

 });

 it("only pause/unpause while not in the same status", async () => {

 await instance.pause();

 expect(await instance.paused()).to.be.true;

 await expect(instance.pause()).to.be.reverted;

 await instance.unpause();

 expect(await instance.paused()).to.be.false;

 await expect(instance.unpause()).to.be.reverted;

 });

 });

 describe("Pause and transfer or approve test", function() {

 it("approve and transfer are abandon while paused", async () => {

 await instance.approve(user1.address,10000);

 await instance.pause();

 await expect(instance.transfer(user1.address,100)).to.be.reverted;

 await

expect(instance.connect(user1).transferFrom(owner.address,user2.address,100)).to.b

e.reverted;

 await

expect(instance.increaseAllowance(user1.address,100)).to.be.reverted;

 await

expect(instance.decreaseAllowance(user1.address,100)).to.be.reverted;

 await

expect(instance.connect(user1).approve(user2.address,1000)).to.be.reverted;

 });

 });

 describe("minter and burn", async () => {

 it("mint should change state and emit event ", async () => {

 await expect(instance.mint(user1.address,10000)).to.be.emit(

 instance,"Transfer"

).withArgs(ethers.constants.AddressZero,user1.address,10000);

 expect(await

instance.balanceOf(owner.address)).to.be.equal(init_supply);

BlockAura Token

Presented by Fairyproof14

Fa
ir
yp
ro
of

Output:

 expect(await instance.balanceOf(user1.address)).to.be.equal(10000);

 expect(await

instance.totalSupply()).to.be.equal(init_supply.add(10000));

 });

 it("mint beyond max_supply should be failed", async () => {

 await

expect(instance.mint(user1.address,max_supply.sub(init_supply).add(1))).to.be.reve

rted;

 });

 it("mint are abandon while paused", async () => {

 await instance.pause();

 await expect(instance.mint(user1.address,100)).to.be.reverted;

 });

 });

});

 BlockauraToken

 Meta test

 ✔ name | symbol | decimals test
 Init status test

 ✔ init_supply test
 approve and allowance test

 ✔ approve should change allowance (38ms)
 ✔ increaseAllowance and decreaseAllowance should change allowance (67ms)
 ✔ user can approve self
 transferFrom and transfer test

 ✔ transfer should change balance
 ✔ transfer to self shouldn't change balance
 ✔ transfer should failed while sender has insufficient tokens (40ms)
 ✔ transferFrom without approval should be failed
 ✔ transferFrom should change balance and allowance (50ms)
 Role and Pause test

 ✔ Only owner can add and remove minter (68ms)
 ✔ Minter can remove self (39ms)
 ✔ Only owner can add and remove a pauser (52ms)
 ✔ Pauser can renounce self (46ms)
 ✔ only pauser can pause/unpause (47ms)
 ✔ pause/unpause can emit event
 ✔ only pause/unpause while not in the same status (45ms)
 Pause and transfer or approve test

 ✔ approve and transfer are abandon while paused (68ms)
 minter and burn

 ✔ mint should change state and emit event
 ✔ mint beyond max_supply should be failed
 ✔ mint are abandon while paused

 21 passing (2s)

BlockAura Token

Presented by Fairyproof15

Fa
ir
yp
ro
of

Index Function Visibility
Re-entrancy
Check

Permission
Check

Unit
Test

Notes

1 name() public No Need No Need Passed view

2 symbol() public No Need No Need Passed view

3 decimals() public No Need No Need Passed view

4 transfer(address,uint256) public No Need No Need Passed notPaused

5 transferFrom(address,address,uint256) public No Need No Need Passed notPaused

6 approve(address,uint256) public No Need No Need Passed notPaused

7 increaseAllowance(address,uint) public No Need No Need Passed notPaused

8 decreaseAllowance(address,uint) public No Need No Need Passed notPaused

9 paused() public No Need No Need Passed view

10 pause() public No Need onlyPauser Passed notPaused

11 unpause() public No Need onlyPauser Passed onlyPaused

12 isPauser(address) public No Need No Need Passed view

13 addPauser(address) public No Need onlyOwner Passed

14 removePauser public No Need onlyOwner Passed

15 renouncePauser() public No Need onlyPauser Passed

16 totalSupply() public No Need No Need Passed view

17 balanceOf(address) public No Need No Need Passed view

18 allowance(address,address) public No Need No Need Passed view

19 mint(address,uint256) public No Need onlyMinter Passed onlyPaused

20 isMinter(address) public No Need No Need Passed view

21 addMinter(address) public No Need onlyOwner Passed

22 removeMinter(address) public No Need onlyOwner Passed

23 renounceMinter() public No Need onlyMinter Passed

24 owner() public No Need No Need Passed view

10.2 Functional Checkpoints

File:BlockAura-ETH.sol

contract: BlockauraToken is ERC20Pausable, ERC20Detailed

BlockAura Token

Presented by Fairyproof16

Fa
ir
yp
ro
of

af://n365
af://n366

	01. Introduction
	— Disclaimer
	— Methodology
	— Structure of the document
	— Documentation
	— Comments from Auditor

	02. About Fairyproof
	03. Major functions of audited code
	04. Coverage of issues
	05. Severity level reference
	06. Major areas that need attention
	- Function Implementation
	- Integer Overflow/Underflow
	- Access Control
	- Token Issuance & Exchange
	- State Update
	- Asset Security
	- Miscellaneous

	07. List of issues by severity
	08. Issue descriptions
	09. Recommendations to enhance the overall security
	10. Appendices
	10.1 Unit Test File
	10.2 Functional Checkpoints
	File:BlockAura-ETH.sol

