
Accumulate Bridge

Version 1.0.0

Serial No. 2022092900012029

Presented by Fairyproof

September 29, 2022

01. Introduction

This document includes the results of the audit performed by the Fairyproof team on the
Accumulate Bridge project.

Audit Start Time:

September 8, 2022

Audit End Time:

September 28, 2022

- Smart Contracts
Audited Code's Github Repository:

https://github.com/AccumulateNetwork/bridge-contracts

Audited Code's Github Commit Number When Audit Started:

26d898c9faf69fd744fb0f6c2dd047738feb64d4

Audited Code's Github Commit Number When Audit Ended:

4e074bc2271c195fea4077c36e70eb728a06b6bf

Note: the project uses the contracts from a third-party project gnosis-safe v1.1.3 . These
contracts were not covered by this audit.

- Bridge Frontend
Audited Code's Github Repository:

https://github.com/AccumulateNetwork/bridge-frontend

Audited Code's Github Commit Number When Audit Started:

3f4bb8fe2275a2f051ad6f543d1dd7346c9d55a4

Audited Code's Github Commit Number When Audit Ended:

4a75d49de214554a750bec3a22ef296bfb713fd2

- Bridge Node
Audited Code's Github Repository:

https://github.com/AccumulateNetwork/bridge

Audited Code's Github Commit Number When Audit Started:

af0c72853c16fa2d473c99ca5ca44870de695b57

Audited Code's Github Commit Number When Audit Ended:

e4d9e49daa65fab1c25f5fb30bea27ed8c306d4b

Accumulate Bridge

Presented by Fairyproof1

Fa
ir
yp
ro
of

af://n0
af://n8
https://github.com/AccumulateNetwork/bridge-contracts
af://n16
https://github.com/AccumulateNetwork/bridge-frontend
af://n23
https://github.com/AccumulateNetwork/bridge

The goal of this audit is to review Accumulate Bridge’s implementation for its cross-chain bridge
function, study potential security vulnerabilities, its general design and architecture, and uncover
bugs that could compromise the software in production.

We make observations on specific areas of the code that present concrete problems, as well as
general observations that traverse the entire codebase horizontally, which could improve its quality
as a whole.

This audit only applies to the specified code, software or any materials supplied by the Accumulate
Bridge team for specified versions. Whenever the code, software, materials, settings, environment
etc is changed, the comments of this audit will no longer apply.

— Disclaimer
Note that as of the date of publishing, the contents of this report reflect the current understanding
of known security patterns and state of the art regarding system security. You agree that your
access and/or use, including but not limited to any associated services, products, protocols,
platforms, content, and materials, will be at your sole risk.

The review does not extend to the compiler layer, or any other areas beyond the programming
language, or other programming aspects that could present security risks. If the audited source
files are smart contract files, risks or issues introduced by using data feeds from off-chain sources
are not extended by this review either.

Given the size of the project, the findings detailed here are not to be considered exhaustive, and
further testing and audit is recommended after the issues covered are fixed.

To the fullest extent permitted by law, we disclaim all warranties, expressed or implied, in
connection with this report, its content, and the related services and products and your use
thereof, including, without limitation, the implied warranties of merchantability, fitness for a
particular purpose, and non-infringement.

We do not warrant, endorse, guarantee, or assume responsibility for any product or service
advertised or offered by a third party through the product, any open source or third-party
software, code, libraries, materials, or information linked to, called by, referenced by or accessible
through the report, its content, and the related services and products, any hyperlinked websites,
any websites or mobile applications appearing on any advertising, and we will not be a party to or
in any way be responsible for monitoring any transaction between you and any third-party
providers of products or services.

FOR AVOIDANCE OF DOUBT, THE REPORT, ITS CONTENT, ACCESS, AND/OR USAGE THEREOF,
INCLUDING ANY ASSOCIATED SERVICES OR MATERIALS, SHALL NOT BE CONSIDERED OR RELIED
UPON AS ANY FORM OF FINANCIAL, INVESTMENT, TAX, LEGAL, REGULATORY, OR OTHER ADVICE.

— Methodology

Accumulate Bridge

Presented by Fairyproof2

Fa
ir
yp
ro
of

af://n37
af://n45

The above files' code was studied in detail in order to acquire a clear impression of how the its
specifications were implemented. The codebase was then subject to deep analysis and scrutiny,
resulting in a series of observations. The problems and their potential solutions are discussed in
this document and, whenever possible, we identify common sources for such problems and
comment on them as well.

The Fairyproof auditing process follows a routine series of steps:

1. Code Review, Including:

Project Diagnosis

Understanding the size, scope and functionality of your project’s source code based on the
specifications, sources, and instructions provided to Fairyproof.

Manual Code Review

Reading your source code line-by-line to identify potential vulnerabilities.

Specification Comparison

Determining whether your project’s code successfully and efficiently accomplishes or executes its
functions according to the specifications, sources, and instructions provided to Fairyproof.

2. Testing and Automated Analysis, Including:

Test Coverage Analysis

Determining whether the test cases cover your code and how much of your code is exercised or
executed when test cases are run.

Symbolic Execution

Analyzing a program to determine the specific input that causes different parts of a program to
execute its functions.

 3. Best Practices Review

Reviewing the source code to improve maintainability, security, and control based on the latest
established industry and academic practices, recommendations, and research.

— Structure of the document
This report contains a list of issues and comments on all the above source files. Each issue is
assigned a severity level based on the potential impact of the issue and recommendations to fix it,
if applicable. For ease of navigation, an index by topic and another by severity are both provided at
the beginning of the report.

— Documentation
For this audit, we used the following sources of truth about how the Accumulate Bridge should
work:

Source Files

Accumulate Bridge

Presented by Fairyproof3

Fa
ir
yp
ro
of

af://n77
af://n80

Serial Number Auditor Audit Time Result

2022092900012029 Fairyproof Security Team Sep 8, 2022 - Sep 28, 2022 Passed

These were considered the specification, and when discrepancies arose with the actual code
behavior, we consulted with the Accumulate Bridge team or reported an issue.

— Comments from Auditor

Summary:

The Fairyproof security team used its auto analysis tools and manual work to audit the project.
During the audit, one issue of medium-severity, two issues of low-severity and three issues of
informational-severity were uncovered. The Accumulate Bridge team fixed all the issues.

02. About Fairyproof

Fairyproof is a leading technology firm in the blockchain industry, providing consulting and security
audits for organizations. Fairyproof has developed industry security standards for designing and
deploying blockchain applications.

03. Introduction to Accumulate Bridge

Accumulate Bridge

Presented by Fairyproof4

Fa
ir
yp
ro
of

af://n86
af://n107
https://www.fairyproof.com/
af://n113

The Accumulate Bridge allows users to move native Accumulate tokens (ACME and any
Accumulate-based tokens) from the Accumulate blockchain to Ethereum and vice versa. The bridge
software consists of the bridge node (golang backend application), the bridge frontend (react web3
application), that allows users to interact with the bridge, and smart contracts (solidity smart
contracts for Ethereum Virtual Machine).

The bridge nodes can be operated by different entities and use multi-signature on both
Accumulate and Ethereum sides to sign txs (mint wrapped ACME on the Ethereum and release
native ACME from the multi-sig token account on the Accumulate).

The bridge node, bridge smart contracts, and the bridge UI are open-source and will be released
under the MIT license.

04. Audited functions

- Bridge Node
Golang Application: https://github.com/AccumulateNetwork/bridge

1.Integration with Accumulate
a.Accumulate ADIs are used as bridge node operators identities on Accumulate side
b.Bridge node operators setup multi-sig token accounts (ADI Token Accounts can only hold one
type of token e.g. ACME))
acc://bridge.acme – ADI (Identity)
acc://bridge.acme//ACME – Token Account for token ACME
acc://bridge.acme//SMTH – Token Account for token SMTH
etc.
c.The Token Account for the Ethereum Bridge may read as so:
acc://bridge.acme/Ethereum/ACME
d.When a user mints wrapped tokens by sending Accumulate tokens to the bridge multi-sig token
account, the memo field of tx is used to store the destination address for wrapped tokens on the
Ethereum network. Bridge nodes collect a list of deposits and parse amounts and destinations.
e.Multi-sig token redemption (burn wrapped token – redeem Accumulate token) – bridge nodes
create a multisig tx from bridge token account and sign it.

2.Integration with Ethereum
a.Multi-sig setup for bridge operators (onboarding/offboarding/txs signing) – we use Gnosis Safe
open-source smart contract for this (https://gnosis-safe.io)
b.Gnosis safe owners are bridge node operators identities on Ethereum side
c.Bridge operators parse burn txs, made by users, from Ethereum
d.Bridge operators mint wrapped tokens by generating and signing multisig mint tx using Gnosis
Safe API (https://safe-transaction.gnosis.io)

Accumulate Bridge

Presented by Fairyproof5

Fa
ir
yp
ro
of

af://n123
af://n125
https://github.com/AccumulateNetwork/bridge
https://gnosis-safe.io/
https://safe-transaction.gnosis.io/

3.Fee module (flat fee without price ACME price oracles)
 Fee1 = Bridge Node Reward (% of amount being sent) (in ACME)
 Fee2 = Mint and Burn Operation that Bridge Validators use on Ethereum (est. in ACME)
 Total Fee = Fee1 + Fee2

4.Minting/burning fees are accumulated into Accumulate multisig token accounts

5.JSON RPC-API (for bridge frontend connection)

6.Documentation

- Bridge Frontend
React Application: https://github.com/AccumulateNetwork/bridge-frontend

1.Integration with Accumulate Bridge backend (via JSON-RPC API)
a.Fee calculation (GET /fees)
b.Bridge-related txs tracking

2.Integration with Ethereum (via web3)
a.MetaMask integration
b.WalletConnect integration
c.Interaction with smart contracts
i.Get token info (name, symbol, decimals)
ii.Get account balance
iii.Approve burn smart contract
d.Burn transactions generation (for users)

3.Documentation

- Smart Contracts
Solidity Smart Contracts
https://github.com/AccumulateNetwork/bridge-contracts

1.Wrapped Token (ERC20) smart contract
a.Unified smart contract for all wrapped tokens (WACME, etc.)
b.Forked from audited Open Zeppelin (ERC20, ERC20Burnable, Pausable, Ownable)
openzeppelin-contracts/contracts/token/ERC20 at master · OpenZeppelin/openzeppelin-contracts ·
GitHub
c.The only difference from Open Zeppelin – decimals variable is used as construction param

d.https://github.com/AccumulateNetwork/bridge-contracts/blob/develop/contracts/WrappedToke
n.sol

2.Accumulate Bridge smart contract

3.Audited Gnosis Safe smart contract
https://github.com/safe-global/safe-contracts/tree/main/contracts

Accumulate Bridge

Presented by Fairyproof6

Fa
ir
yp
ro
of

af://n134
https://github.com/AccumulateNetwork/bridge-frontend
af://n140
https://github.com/AccumulateNetwork/bridge-contracts
https://github.com/AccumulateNetwork/bridge-contracts/blob/develop/contracts/WrappedToken.sol
https://github.com/safe-global/safe-contracts/tree/main/contracts

a.Example: https://rinkeby.etherscan.io/address/0x5ca3ad054405cbe88b0907131cf021f8d24a6291
●Bridge Operators are owners of Gnosis Safe smart contract (multi-sig M of N)
●Gnosis Safe smart contract is the owner of Accumulate Bridge smart contract (multi-sig required
for admin bridge operations like mint)
●Accumulate Bridge smart contract is the owner of Wrapped Token(s) smart contract(s)
●Admin operations, e.g. token mint, require multi-sig tx, submitted to the Gnosis Safe smart
contract, with the instruction to interact with controlled Accumulate Bridge smart contract, that
calls mint of the controlled Wrapped Token smart contract
○Example: https://rinkeby.etherscan.io/tx/0x6a39ceed686e633b05aba7ccfea001ddb4e0d0840083e
afc1eee382709e159e0

05. Coverage of issues

The issues that the Fairyproof team covered when conducting the audit include but are not limited
to the following ones:

Re-entrancy Attack
Replay Attack
Reordering Attack
Miner's Advantage
Rollback Attack
DDoS Attack
Injection Attack
Transaction Ordering Attack
Race Condition
Access Control
Integer Overflow/Underflow
Timestamp Attack
Gas Consumption
Inappropriate Callback Function
Function Visibility
Implementation Vulnerability
Uninitialized Storage Pointer
Arithmetic Precision
Tx.origin
Fake Deposit
Shadow Variable
Design Vulnerability
Token Issuance
Admin Rights
Inappropriate Proxy Design
Inappropriate Use of Slots
Asset Security
Contract Upgrade/Migration

Accumulate Bridge

Presented by Fairyproof7

Fa
ir
yp
ro
of

https://rinkeby.etherscan.io/address/0x5ca3ad054405cbe88b0907131cf021f8d24a6291
https://rinkeby.etherscan.io/tx/0x6a39ceed686e633b05aba7ccfea001ddb4e0d0840083eafc1eee382709e159e0
af://n149

Code Improvement
Misc

06. Severity level reference

Every issue in this report was assigned a severity level from the following:

Critical severity issues need to be fixed as soon as possible.

High severity issues will probably bring problems and should be fixed.

Medium severity issues could potentially bring problems and should eventually be fixed.

Low severity issues are minor details and warnings that can remain unfixed but would be better
fixed at some point in the future.

Informational is not an issue or risk but a suggestion for code improvement.

07. List of issues by severity

Accumulate Bridge

Presented by Fairyproof8

Fa
ir
yp
ro
of

af://n216
af://n232

Index Title Issue/Risk Severity Status

FP-1 Invalid Owner Provided
Implementation

Vulnerability
Medium

✓
Fixed

FP-2
Missing Validation for EVM

Address
Implementation

Vulnerability
Low

✓
Fixed

FP-3 Missing Check for Account
Implementation

Vulnerability
Low

✓
Fixed

FP-4
Missing Verification for

BridgeAddress
Implementation

Vulnerability
Info

✓
Fixed

FP-5
Redundant Replay Attack

Protection
Code Improvement Info

✓
Fixed

FP-6 Incorrect Button Status
Implementation

Vulnerability
Info

✓
Fixed

08. Issue descriptions

[FP-1] GS026: Invalid Owner Provided Medium ✓ Fixed

Issue/Risk: Implementation Vulnerability

Description:

Gnosis safe API kept returning mint tx as incomplete after it was submitted to the network
Leader node submitted it again
Tx had been reverted by the network

Error GS026 was generated.

Recommendation:

Consider storing the latest safetxhash and checking that safetxhash from API differs from the latest
submitted.

Update/Status:

It has been fixed by the Accumulate Bridge team at https://github.com/AccumulateNetwork/bridge/
commit/6cd5f045fd135e7eda38082b2d65778126107f21

[FP-2] Missing Validation for EVM Address Low ✓

Fixed

Accumulate Bridge

Presented by Fairyproof9

Fa
ir
yp
ro
of

af://n281
https://github.com/AccumulateNetwork/bridge/commit/6cd5f045fd135e7eda38082b2d65778126107f21

Issue/Risk: Implementation Vulnerability

Description:

The processNewDeposits didn't validate the EVM address. If it was an invalid address, tokens

transferred to that address might be lost permanently.

Recommendation:

Consider adding validation for the EVM address. If it is invalid, quit the transaction.

Update/Status:

It has been fixed by the Accumulate Bridge team at: https://github.com/AccumulateNetwork/bridg
e/commit/abddcd75910a21e3f7d87c1f85b8da4315d25abf

[FP-3] Missing Check for Account Low ✓ Fixed

Issue/Risk: Implementation Vulnerability

Description:

When Release is executed , the acc is not verified whether it is a Token Account . If a non Token

Account is passed, the cross-chain transaction will fail.

Recommendation:

Consider adding the following logic:

If a Lite Account is passed, the implementation should check if the account already exists. If

it doesn't exist, an error message should be generated.
If a non Lite Account is passed, it already exists and it is a Token Account , the transaction

can proceed.

Update/Status:

It has been fixed by the Accumulate Bridge team at https://github.com/AccumulateNetwork/bridge-
frontend/commit/f6dba2c6364e7e7264abca967ab5bd9558457856

[FP-4] Missing Verification for BridgeAddress

Informational ✓ Fixed

Issue/Risk: Implementation Vulnerability

Description:

The parseToken doesn't verify BridgeAddress . If the address was incorrectly configured, cross-
chain transactions with the address would fail.

Recommendation:

Consider adding verification for BridgeAddress in parseToken .

Update/Status:

It has been fixed by the Accumulate Bridge at https://github.com/AccumulateNetwork/bridge/com
mit/e4d9e49daa65fab1c25f5fb30bea27ed8c306d4b.

Accumulate Bridge

Presented by Fairyproof10

Fa
ir
yp
ro
of

https://github.com/AccumulateNetwork/bridge/commit/abddcd75910a21e3f7d87c1f85b8da4315d25abf
https://github.com/AccumulateNetwork/bridge-frontend/commit/f6dba2c6364e7e7264abca967ab5bd9558457856
https://github.com/AccumulateNetwork/bridge/commit/e4d9e49daa65fab1c25f5fb30bea27ed8c306d4b

[FP-5] Redundant Replay Attack Protection

Informational ✓ Fixed

Issue/Risk: Code Improvement

Description:

In AccumulateBridge.sol all external functions have already been protected from replay attacks.

Recommendation:

Consider removing the code to prevent replay attacks.

Update/Status:

It has been fixed by the Accumulate Bridge team at https://github.com/AccumulateNetwork/bridge-
contracts/commit/6042dd59abe4ebf30831c13535b00f0c4e593d29.

[FP-6] Incorrect Button Status Informational ✓ Fixed

Issue/Risk: Implementation Vulnerability

Description:

After the Approve button is hit and the page reloads, button will still show Approve .

Recommendation:

Consider changing the code such that after the Approve button is hit and the page reloads the
button will show Approved .

Update/Status:

It has been fixed by the Accumulate Bridge team at https://github.com/AccumulateNetwork/bridge-
frontend/commit/4b2e96e5b4ce533a412d89c10c676a9ef2bd1c70

09. Recommendations to enhance the
overall security

We list some recommendations in this section. They are not mandatory but will enhance the
overall security of the system if they are adopted.

Consider limiting the maximum allowed tokens to be transferred daily. This is to mitigate the
risk of the crypto assets being drained.

Accumulate Bridge

Presented by Fairyproof11

Fa
ir
yp
ro
of

https://github.com/AccumulateNetwork/bridge-contracts/commit/6042dd59abe4ebf30831c13535b00f0c4e593d29
https://github.com/AccumulateNetwork/bridge-frontend/commit/4b2e96e5b4ce533a412d89c10c676a9ef2bd1c70
af://n348

Consider adding a function to combine multiple transactions into an atomic "combo"
transaction. When such a "combo" transaction is executed, either all of the transactions
included will succeed or none of the transactions will succeed.
To complete a cross-chain transaction, the private keys of an EMV blockchain's wallet and an
Accumulate's wallet are used to sign it. In the existing implementation the private keys are
kept locally in configuration files which are accessible to operators. This introduces risks of the
private keys being compromised. Consider using Clef for signing a transaction on an EVM
chain and Walletd for signing a transaction on Accumulate. Clef and Walletd should be
deployed independently from the bridge nodes. Access control to Celf and Walletd should be
managed and maintained by different people. Although this may increase the maintenance
costs, it will greatly enhance the overall security.

Accumulate Bridge

Presented by Fairyproof12

Fa
ir
yp
ro
of

	01. Introduction
	- Smart Contracts
	- Bridge Frontend
	- Bridge Node
	— Disclaimer
	— Methodology
	— Structure of the document
	— Documentation
	— Comments from Auditor

	02. About Fairyproof
	03. Introduction to Accumulate Bridge
	04. Audited functions
	- Bridge Node
	- Bridge Frontend
	- Smart Contracts

	05. Coverage of issues
	06. Severity level reference
	07. List of issues by severity
	08. Issue descriptions
	09. Recommendations to enhance the overall security

